化学反应动力学第二章习题答案 下载本文

内容发布更新时间 : 2025/1/6 19:02:11星期一 下面是文章的全部内容请认真阅读。

化学反应动力学

第二章习题

1、The first-order gas reaction SO2Cl2 ? SO2 + Cl2 has k = 2.20 ? 10-5 s-1 at 593K,

(1) What percent of a sample of SO2Cl2 would be decomposed by heating at 593K for 1 hour?

(2) How long will it take for half the SO2Cl2 to decompose? 解:一级反应动力学方程为:

[SO2Cl2]?[SO2Cl2]??e?k?t ?

[SO2Cl2]?e?k?t

[SO2Cl2]?[SO2Cl2]?2.20?10?5?60?60?e(1) 反应达1小时时:=0.924=92.4%

[SO2Cl2]?已分解的百分数为:100%-92.4%=7.6% (2) 当

[SO2Cl2]111? 时,t??ln?31506.7s

[SO2Cl2]?2k20.693 = 31500 s = 8.75 hour

22.2?10?52、T-butyl bromide is converted into t-butyl alcohol in a solvent containing 90 percent acetone and 10 percent water. The reaction is given by (CH3)3CBr + H2O ? (CH3)3COH + HBr

The following table gives the data for the concentration of t-utyl bromide versus time: t1?T(min) 0 9 18 24 40 54 72 105 (CH3)CBr (mol/L) 0.1056 0.0961 0.0856 0.0767 0.0645 0.0536 0.0432 0.0270 (1) What is the order of the reaction?

(2) What is the rate constant of the reaction? (3) What is the half-life of the reaction?

解: (1) 设反应级数为 n,则 ?11d[A]??kt ?k[A]n ? n?1n?1[A]dt[A]?1[A]? 若 n=1,则 k?ln

t[A]10.105610.1056?0.01047 , t = 18 k?ln?0.01167 t = 9 k?ln90.0961180.085610.105610.1056ln?0.01332, t = 40 k?ln?0.01232 t = 24 k?240.0767400.0645 t = 54 k?0.01256 , t = 72 k?0.01241, t = 105 k?0.01299

1

111?) 若 n=2,则 k?(t[A][A]? t : 9 18 24 40 54 k : 0.1040 0.1229 0.1487 0.1509 0.1701 若 n=1.5

t : 9 18 24 k : 0.0165 0.0189 0.0222 若 n=3

t : 9 18 24 k : 2.067 2.60 3.46

反应为一级。

(2) k = 0.0123 min -1= 2.05×10-4 s -1

0.693 (3)t1?= 56.3 min = 3378 s

20.01233、已知复杂反应:

A1

的速率方程为?导过程。

解:设 t?0 时, [A1]?[A1]? ,[A2]?[A2]? ,[A3]?[A3]?

t?t 时, [A1]?[A1]??x ,[A2]?[A2]??x ,[A3]?[A3]??x 代入 ? 得:

d[A1]?k1[A1]?k?1[A2][A3] dtk1k-1A2 + A3d[A1]?k1[A1]?k?1[A2][A3],推导其动力学方程。要求写出详细的推dtdx?k1([A1]??x)?k?1([A2]??x)([A3]??x) dt ?k1[A1]??k1x?k?1[A2]?[A3]??k?1[A3]?x?k?1[A2]?x?k?1x2 ?k1[A1]??k?1[A2]?[A3]??(k1?k?1[A3]??k?1[A2]?)x?k?1x2 令 α = k1[A1]??k?1[A2]?[A3]? , β = k1?k?1[A3]??k?1[A2]? , γ = ?k?1

dx????x??x2 , 移项积分: dt

?x0tdx?dt 2?0???x??x 2

?x2dx(x??????4???????4??)(x?)2?2?20?t

令 q?

?2?4?? ,

?xdxq??q??(x?)(x?)2?2?x?0?t

q??2? lnq??x?2?x0?qt

??q??q2?}?{ln}?qt 得动力学方程:{ln??q??qx?2?x?4、已知复杂反应由下列两个基元反应组成:

k1 A1A2k2A2 +A1 A3求反应进行过程中,A1物种浓度与A3物种浓度间的关系。要求写出详细的推导过程。

解:速率方程:

d[A2]?k1[A1]?k2[A1][A2] (1) dtd[A3]?k2[A1][A2] (2) dt

d[A2]k1?k2[A2](1)?,得: d[A]k[A](2)322设 t?0 时,[A2]?[A2]? ,[A3]?0, 移项积分:

[A2]k2[A2]d[A]??[A2]?k1?k2[A2]2?0d[A3] [A2] 3