内容发布更新时间 : 2025/1/9 6:21:49星期一 下面是文章的全部内容请认真阅读。
(2)全国最低限度的制定主要根据全国国整体的情况而定,因此gMIN基本与上述模型的随机扰动项无关。(2分) (3)由于地方政府在制定本地区最低工资水平时往往考虑全国的最低工资水平的要求,因此gMIN1与gMIN具有较强的相关性。结合(2)知gMIN可以作为gMIN1的工具变量使用。(3分) 29.解答:(1)这是一个确定的关系,各产业生产总值之和等于国内生产总值。作为计量模型不合理。(3分)(2)(3)(4)(5)都是合理的计量经济模型。(4分)(6)不合理。发电量和钢铁产量影响对煤炭的需求,但不会影响煤炭的产量。作为解释变量没有意义。(3分) 30.解答:(1)模型中RIt的系数符号为负,不符合常理。居民收入越多意味着消费越多,二者应该是正相关关系。(3分)
(2)Y的系数是1.2,这就意味着每增加一元钱,居民消费支出平均增加1.2元,处于一种入不敷出的状态,这是不可能的,至少对一个表示一般关系的宏观计量经济模型来说是不可能的。(4分)
(3) L的系数符号为负,不合理。职工人数越多工业总产值越少是不合理的。这很可能是由于工业生产资金和职工人数两者相关造成多重共线性产生的。(3分) 31.解答:(1)临界值t =1.7291小于18.7,认为回归系数显著地不为0.(4分) (2)参数估计量的标准误差:0.81/18.7=0.0433(3分)
(3)不包括。因为这是一个消费函数,自发消费为15单位,预测区间包括0是不合理的。(3分) 32.解答:(1)对于yt?b0?b1x1t?b2x2t?...?bkxkt?ut如果随机误差项的各期值之间存在着相关关系,即(3分) cov(ut,us)?E(utus)?0(t,s?1,2...,k)称随机误差项之间存在自相关性。(2)该模型存在一阶正的自相关,因为0 (3)自相关性的后果有以下几个方面:①模型参数估计值不具有最优性;②随机误差项的方差一般会低估;③模型的统计检验失效;④区间估计和预测区间的精度降低。(4分) 33.解答:(1)查表得临界值dL?1.05,dU?1.66。DW?1.147正位于1.05和1.66之间,恰是D-W检验的无判定区域,所以一阶自相关的DW检验是无定论的。(3分) (2)对于模型yt?b0?b1x1t?b2x2t?...?bkxkt?ut,设自相关的形式为ut??1ut?1??2ut?2?...??put?p?vt 假设H0:?1??2?...??p?0,(1分)LM检验检验过程如下:首先,利用OLS法估计模型,得到残差序列et;(2分)其次,将et关于残差的滞后值进行回归,并计算出辅助回归模型的判定系数R;(2分)最后,对于显著水平?, 2若nR大于临界值??(2分) (p),则拒绝原假设,即存在自相关性。 2234.解答:(1)总离差(TSS)的自由度为n-1,因此样本容量为15;(2分) (2)RSS=TSS-ESS=66042-65965=77;(2分) (3)ESS的自由度为2,RSS的自由度为12;(2分) 2(4)R=ESS/TSS=65965/66042=0.9988,R?1?2n?114(1?R2)?1?(1?0.9988)?0.9986(4分) n?k?11235.解答:(1)0.722是指,当城镇居民人均可支配收入每变动一个单位,人均消费性支出资料平均变动0.722个单位, 也即指边际消费倾向;137.422指即使没有收入也会发生的消费支出,也就是自发性消费支出。(3分) u(2) 在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项i具有 异方差性。(3分) 26 2(3) 存在异方差性,因为辅助回归方程R?0.634508,F?26.04061,整体显著;并且回归系数显著性地不为0。 戈里瑟检验就是这样的检验过程。(4分) 36.答:不能。(3分)因为X1和X2存在完全的多重共线性,即X2=2 X1-1,或X1=0.5(X2+1)。(7分) 37.答: (1)t0.025(18)?2.1009 Lnk的T检验:t=10.195>2.1009,因此lnk的系数显著。 Lnl的 T检验:t=6.518>2.1009,因此lnl的系数显著。 (4分) (2)t0.025(17)?2.1098 t的T检验:t=1.333>2.1098,因此lnk的系数不显著。 Lnk的 T检验:t=1.18>2.1098,因此lnl的系数不显著。 (4分) (3)可能是由于时间变量的引入导致了多重共线性。 (2分) 38. 解答:这时会发生完全的多重共线性问题;(3分)因为有四个季度,该模型则引入了四个虚拟变量。显然,对于任一季度而言,D1t?D2t?D3t?D4t?1,则任一变量都是其他变量的线性组合,因此存在完全共线性。当有四个类别需要区分时,我们只需要引入三个虚拟变量就可以了;(5分)参数将不能用最小二乘法进行估计。(2分) ?1????第三季度?1????第二季度39. 解答:(1)假设第一季度为基础类型,引入三个虚拟变量D2??;D3??; 0???其他??0???其他?1????第四季度, D4???0???其他利润模型为yt?b0?b1xt?a1D2t?a2D3t?a3D4t?ut。(5分) (2)利润模型为yt?b0?b1xt?a1D2txt?a2D3txt?a3D4txt?ut(2分) (3分)利润模型为yt?b0?b1xt?a1D2txt?a2D3txt?a3D4txt?a4D2t?a5D3t?a6D4t?ut(3分) 40. 解答:通货膨胀与工业生产增长速度关系的基本模型为It?b0?bG1t?ut ?1????????年及以后引入虚拟变量D?? (4分) ?0????????年以前??则(1)It?b0?bG1t?aDt?ut (3分) (2)It?b0?bG1t?a1Dt?a2DGtt?ut (3分) 41. 解答:(1)D1的经济含义为:当销售收入和公司股票收益保持不变时,金融业的CEO要比交通运输业的CEO多获15.8个百分点的薪水。其他两个可类似解释。(3分) (2)公用事业和交通运输业之间估计薪水的近似百分比差异就是以百分数解释的D3参数,即为28.3%.由于参数的t统计值为-2.895,它大于1%的显著性水平下自由度为203的t分布 临界值1.96,因此这种差异统计上是显著的。(4分) (3) 由于消费品工业和金融业相对于交通运输业的薪水百分比差异分别为15.8%与18.1%,因此他们之间的差异为18.1%-15.8%=2.3%。(3分) 42.解答:记学生月消费支出为Y,其家庭月收入水平为X,在不考虑其他因素影响时,有如下基本回归模型: 27 yi??0??1xi??i(2分) 其他决定性因素可用如下虚拟变量表示: ?1,有奖学金?1,来自城市?1,来自发达地区?1,男性D1??D2??D3??D4??0,无奖学金,0,来自农村,0,来自欠发达地区,????0,女性则引入各虚拟变量后的回归模型如下:Yi??0??1Xi??1D1i??2D2i??3D3i??4D4i??i????????????分?()来自欠发达农村地区的女生,未得奖学金时的月消费支出;1E?Yi|Xi,D1i?D2i?D3i?D4i?0???0??1Xi??????????分?(2)来自欠发达城市地区的男生,得到奖学金时的月消费支出:E?Yi|Xi,D1i?D4i?1,D2i?D3i?0??(?0??1??4)??1Xi??????????分?(3)来自发达地区的农村女生,得到奖学金时的月消费支出:E?Yi|Xi,D1i?D3i?1,D2i?D4i?0??(?0??1??3)??1Xi??????????分?(4)来自发达地区的城市男生,未得到奖学金时的月消费支出:E?Yi|Xi,D2i?D3i?D4i?1,D1i?0??(?0??2??3??4)??1Xi??????????分?43. 答案:引入反映季节因素和收入层次差异的虚拟变量如下: ?1,高收入?1,旺季D1??D2?? (3分)?0,淡季,?0,低收入,则原消费需求函数变换为如下的虚拟变量模型:Yi????1Xi??2D1i??3D2i??i (3分)()低收入家庭在某商品的消费淡季对该类商品的平均消费支出为;1E?Yi?????1Xi (1分) (2)高收入家庭在某商品的消费淡季对该类商品的平均消费支出为: E?Yi??(???3)??1Xi (1分)(3)低收入家庭在某商品的消费旺季对该类商品的平均消费支出为:E?Yi??(???2)??1Xi (1分)(4)高收入家庭在某种商品的消费旺季对该类商品的平均消费支出为:E?Yi??(???2??3)??1Xi (1分)2???????i??i?0=i01244.根据阶数为2的Almon多项式:,i=0,1,2,3(3分);可计算得到i的估计值:? 0=??0+??1+??2=0.91(3分)?0+2??1+4??2=1.72(3分)?0+3??1+9??20.3(3分);? 1=?;? 2=?;? 3=?=2.73(3分)。 2?????i??i??????i01245.由已知估计式可知:0=0.71,1=0.25,2=-0.3(3分),根据阶数为2的Almon多项式:, ????0=0.71(3分)?0+??1+??2=0.66(3分)?0i=0,1,2(3分);可计算得到βi的估计值:? 0=?;? 1=?;? 2=??1+4??2=0.01(3分)+2?。 46.(1)分布滞后模型为 ???Yt????0Xt??1Xt?1??2Xt?2?ut(2分) 28 2?????i??i??????i012(2)由已知估计式可知:0=0.53,1=0.80,2=-0.33(1分),根据阶数为2的Almon多项式:, ?0=0.53(3分)?0+??1+??2=1.00(3分)?0i=0,1,2(3分);可计算得到βi的估计值:? 0=?;? 1=?;? 2=??1+4??2=0 +2?47.(1)内生变量为It,Yt,Ct,前定变量为Yt?1,Ct?1,rt (6)(2)消费方程为过度识别,投资方程是恰好识别;(6分)(3)消费方程适合用二阶段最小二乘法,投资方程适合用间接最小二乘法(或工具变量法) (3分) 48.(1)内生变量为It,Yt,Ct(2分);外生变量为Gt(1分);前定变量为Gt和Yt?1(2分) (2)识别方程1:被斥变量的参数矩阵: 1 -b2 0 -1 0 1 ??? (1分) 秩为2,方程个数减1为2,故方程可识别(2);再根据阶段条件,可得方程1恰好识别(2)。 识别方程2:被斥变量的参数矩阵为 0 -1 0 1 (1分) 秩为1,小于方程个数减1,故方程2不可识别。(2分) 方程3是恒等式,不存在识别问题(1分); 因此,整个模型不可识别(1分) 49.方程1:由于包含了方程中所有变量,故不可识别。(3分) 方程2:利用秩条件,得被斥变量的参数矩阵(-α2)(2分),其秩为1(2分),与方程个数减1相等,故可知方程2可识别(2分);再利用阶条件,方程2排除的变量个数正好与剩下的方程个数相等(2分),可知方程2恰好识别(2分)。由于方程1不可识别,所以整个模型不可识别(2)。 50.(1)方程1:利用秩条件,得被斥变量的参数矩阵(-β2),其秩为1,与方程个数减1相等,故可知方程1可识别(3分);再利用阶条件,方程2排除的变量个数正好与剩下的方程个数相等,可知方程1恰好识别(2分)。 方程2:利用秩条件,得被斥变量的参数矩阵(-α2),其秩为1,与方程个数减1相等,故可知方程2可识别(3分);再利用阶条件,方程2排除的变量个数正好与剩下的方程个数相等,可知方程1恰好识别(2分)。 (2)方程1仍是恰好识别的(3分),但方程2包括了模型中所有变量,故是不可识别的(2分)。 29