黑龙江省哈尔滨市道外区初中数学升学考试调研测试试题 下载本文

内容发布更新时间 : 2024/12/25 22:59:04星期一 下面是文章的全部内容请认真阅读。

经检验 x=100是原方程的解

1.5x=1.5×100=150

……1分 答:甲工程队每天完成绿化的面积是150m2,乙工程队每天完成绿化的面积是100m2

(2)解:设应安排甲队工作a天 根据题意得 0.5a?3000?150a100?0.4≤11

……2分

解得 a≥10

……2分 答:至少应安排甲队工作

10天 ……1分 ⑴证明:连接AD

∵AC是⊙O的直径 ∴∠ADC=90° ……1分 ∴∠DAC+∠ACD=90° ∵DC=DC ∴∠DEC=∠DAC 又∵∠DEC=∠EBC ∴∠DAC=∠EBC ……1分 ∴∠EBC+∠ACD=90° ∴ ∠BFC=90°……1分 (2)证明:连接AD、连接GC

∵AC是⊙O的直径 ∴∠ADC=∠AGC=90° ∵AG∥BC ∴∠GAD+∠ADC=180° ∴∠GAD=90° ……1分 即∠GAD=∠ADC=∠CGA=90°

∴四边形GADC是矩形 ……1分 ∴AG=DC ……1分

(3)∵FH:HE=1:2 ∴设FH=a (a>0),则HE=2a

由(1)知∠BFC=90° ∴ OF⊥EG于点F ∠HAF+∠AHF=90° ∴FG=FE=3a

由(2)知 ∠HAF+∠FAG=90°

∴∠AHF=∠FAG ∴tan∠AHF=tan∠FAG ∴

AFFGHF?AF ∴AF2=HF·FG ∴(3)2?a·3a ∴3a2

=3 ∵a>0 ∴a=1 ……1分 ∴HF=1 EH=2 FG=3 ∴GH=4 ∵AE=AE ∴∠ACE=∠AGE ∵AG∥BC ∴∠AGE=∠EBC 又∵∠EBC=∠DEC ∴∠DEC=∠ACE ∴DE∥AC ……1分 ∴AHHFDH?HE ∵AG∥BC ∴

AHDH?GHBH ∴GHBH?HFHE?12……1分

又∵GH=4 ∴HB=8 ∴BE=BH-HE=8-2=6 ……1分

27(1)∵抛物线y=ax2

+bx+5交y轴于点C 当x=0时,y=5 ∴C(0,5)

∵CD∥x轴 ∴D的纵坐标为5 当y=5时,x+2=5 ∴x=3 ∴D(3,5) ……1分 ∵y=x+2 交x轴于A 当y=0时,x=-2 ∴ A(-2,0) ∵抛物线过A(-2,0) 、 D(3,5) ∴ 0=a(-2)2+b(-2)+5 ∴ a=?12 5=a×32

……1分 +3b+5 b=32

6

∴抛物线解析式为y??设F(t,-

123x?x?5 ……1分 22123t?t?5) 221FG1 ∴ ? ∴AG=2FG ……1分 2AG2??123?t??5)? 22? 过F作FG⊥x轴于点G,则G(t,0) ∵tan∠BAF=

∴t-(-2)=2×?0?(?2

整理得 t-4t-12=0 t1=-2 t2=6 ……1分

∵F在第四象限 ∴t>0 ∴t=-2舍 ∴t=6 ∴F(6,-4) ……1分 (3)∵A(-2,0) F(6,-4) 设直线AF解析式y=k1+b1 ∴ 0=-2k1+b1 ∴ k1=?1 2 -4=6k1+b1 b1=-1 ∴直线AF解析式为y=-

1x-1 ……1分 2 ∵y=x+2 交y轴于E 当x=0时,y=2 ∴ E(0,2) 设直线PE交直线AF于点Q ∵HE=PE ∴∠EHP=∠EPH

∵PH⊥AF于H ∴∠PHA=90°

∴∠PQH+∠QPH=90° ∠QHE+∠EHP=90° ∴∠EQH=∠EHQ ∴EQ=EH 又∵HE=PE ∴EQ=EP ……1分 即E为PQ中点

123m?m?5) 22123 ∵E(0,2) ∴Q(m,m?m?1)

22 设P(m,? ∵Q在直线AF上 ∴

1231m?m?1??(?m)?1 整理得m2=4m ∴m1=0 m2=4 222 当m1=0时 ∴P1(0,5) ……1分

当m2=4时 ∴P2(4,3) ……1分

注:以上各解答题如有不同解法并且正确,请按相应步骤给分

7