内容发布更新时间 : 2025/1/1 12:26:27星期一 下面是文章的全部内容请认真阅读。
精心整理
2014竞赛讲座
专题1.参考系相对运动与连接体的速度关联
〖典型例题〗
(1)灵活利用参考系解决物理问题,尤其是涉及两个物体的运动问题
【例1】t=0时刻从水平地面上的O点在同一铅垂面上同时朝图示的两个方向发射初速率分别为
vA=10m/s和vB=20m/s的两个质点A、B,试问t=1s时A、B相距多远? vB 80o
v40
(2)速度变换关系:vA?C?vA?B?vB?C
【例2】如图所示,一列相同汽车以等速度V沿宽度为C的直公路行驶,每
车宽为b,头尾间距为a则人能以最小速度沿一直线穿过马路所用的时间为多少?
【例3】超声波流量计是利用液体流速对超声波传播速度的影响来测量液体流速,再通过流速来确
定流量的仪器。一种超声波流量计的原理示意图如图所示。在充满流动液体(管道横截面上各点
流速相同)管道两侧外表面上P1和P2处(与管道轴线在同一平面内),各置一超声波脉冲发射器
T1、T2和接收器R1、R2。位于P1处的超声波脉冲发射器T1向被测液体发射超声脉冲,当位于P2
处的接收器R2接收到超声脉冲时,发射器T2立即向被测液体发射超声脉冲。如果知道了超声脉冲
从P1传播到P2所经历的时间t1和超声脉冲从P2传播到P1所经历的时间t2,又知道了P1、P2两点
间的距离l以及l沿管道轴线的投影b,管道中液体的流速便可求得u。试求u。
(3)连接体的速度关联
【例4】两只小环O和O?分别套在静止不动的竖直杆AB和A?B?上。一根不可伸长的绳子,一端系
在A?点上,绳子穿过环O?,另一端系在环O上。如图所示,若环O?以恒定速度V1沿杆向下运动,?AO
O?=?。求环O的运动速度为多大?
【例5】如图所示,AB杆的A端以匀速V运动,在运动时杆恒与一水平半圆相切,半圆的半径为
R,当杆与水平线的交角为θ时,求杆的角速度及杆上与半圆相切点C的速度和杆与圆柱接触点
C1的速度的大小。
精心整理
(4)用微元法求物体的速度加速度
【例6】A、B、C三质点同时从边长为L的等边三角形三顶点A、B、C出发,以相同的不变速率
v运动,运动中始终保持A朝着B,B朝着C,C朝着A,则经过时间t=_______后三质点相遇,当
他们开始运动时加速度大小a=________________。
(5)利用导数示物体的速度加速度
【例7】如图所示,水平高台上有一小车,水平地面上有一拖车,两车之间用一根不可伸长的绳跨
在拖车行进
过定滑轮相连。拖车从滑轮正下方以恒定速度沿直线运动,则
的过程中,小车的加速度? A.?逐渐减小?B.逐渐增大?
C.先减小后增大?D.先增大后减小?
【例8】如图所示,一个半径为R的半圆柱体沿水平方向向右做加速度为a的匀加速度直线运动,
在半圆柱体上放置一个竖直杆,此杆只能沿竖直方向运动。当半圆柱体的速度为v时,杆与半圆
柱体接触点P与圆柱柱心的连线OP,与竖直方向的夹角为θ,求此时竖直杆运动的速度和加速度。
【例9】一半径为R的半圆柱面在水平面上向右做加速度为a的匀加速
O P 运动,在柱面上有一系在水平绳子自由端的小球P,绳子的另一端固定在墙面上。如图所示,当小球相对于半圆柱面的角位置为θ时,半圆柱面的速度为v,求此时小球的速率和加速度的大小。
【例10】在如图所示的系统中,滑轮与线的质量可忽略不计,线不可伸长,滑轮的大小正好使图
中的线是竖直的。问图中两物块M和m的加速度分别为多少?线上有点A,如图所示,该点的加
速度为多少?
专题2.抛体运动、一般的曲线运动与天体运动
〖典型例题〗
(1)熟练运用基本规律,灵活运动特殊规律
精心整理
【例1】大炮在山脚直接对着倾角为α的山坡发射炮弹,炮弹初速度为V0,要在山坡上达到尽可
能远的射程,则大炮的瞄准角度为多少?最远射程为多少?
【例2】在掷铅球时,铅球出手时距地面的高度为h,若出手时速度为V0,求以何角度掷球时,水
平射程最远?最远射程为多少? (2)巧妙运动矢量的合成与分解
【例3】有一只狐狸以不变的速度v1沿直线AB逃跑,一只猎犬去追击。
(1)若猎犬以不变的速度追击。某时刻狐狸在A处,猎犬在D处,且FD⊥AB,FD=a,AF=b,
如图所示。试求猎犬追上狐狸的最小速度。
(2)若猎犬以不变的速率v2追击,且其运动方向始终对准狐狸。某时刻狐狸在F处,猎犬在
D处,且FD⊥AB,FD=L,如图所示。试求此时猎犬的加速度大小 (3)承第二问,从此时开始计时,需多长时间,猎犬追上狐狸?
A F B
【例4】已知等距螺旋线在垂直轴方向的截面圆半径为R曲率半径为ρ,
D 一质点沿此螺旋线作匀速率运动。已知质点在垂直轴方向的投影转过一
周所用的时间为T则质点沿轴方向的分运动速度大小为多少?
(3)求解天体运动问题的基本方法:
【例5】将一天的时间记为T,地面上的重力加速度为g,地球半径记为Re。
1.试求地球同步卫星P的轨道半径Rp;
2.赤道城市A的居民整天可看见城市上空挂着同步卫星P;
(1)假设P的运动方向突然偏北转过450,试分析地判定而后当地居民一在能有多少机会可看到
P掠过城市上空?
(2)取消(1)问中的偏转,改设P从原来的运动方向突然偏西北转过1050,再分析地判定而后
当地居民一天能有多少次机会可看到P掠过城市上空?