内容发布更新时间 : 2024/12/23 14:47:00星期一 下面是文章的全部内容请认真阅读。
八、常用算法
(一)考核知识要点
1.交换、累加、累乘、求最大(小)值 2.穷举
3.排序(冒泡、插入、选择) 4.查找(顺序、折半) 5.级数计算(递推法)
6.一元方程求解(牛顿迭代法、二分法) 7.矩阵(转置)
8.定积分计算(矩形法、梯形法) 9.辗转相除法求最大公约数、判断素数 10.数制转换
(二)重点、难点精解
教材中给出的算法就不再赘述了。 1.基本操作:交换、累加、累乘
1)交换
交换算法的要领是“借助第三者”(如同交换两个杯子里的饮料,必须借助第三个空杯子)。例如,交换两个整型变量里的数值:int a=7,b=9,t;
t=a; a=b; b=t;
(不借助第三者,也能交换两个整型变量里的数值,但不通用,只是一个题目而已。 例如:int a=7,b=9; a=a+b; b=a-b; a=a-b;) 2)累加
累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。 3)累乘
累乘算法的要领是形如“s=s*A”的累乘式,此式必须出现在循环中才能被反复执行,从而实现累乘功能。“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为1。
2.非数值计算常用经典算法
1)穷举法
也称为“枚举法”,即将可能出现的各种情况一一测试,判断是否满足条件,一般采用循环来实现。
例如,用穷举法输出“将1元人民币兑换成1分、2分、5分硬币”的所有方法。 main() {int y,e,w;
for(y=0;y<=100;y++) for(e=0;e<=50;e++) for(w=0;w<=20;w++) if(1*y+2*e+5*w==100) printf(\}
2)有序序列的插入算法
就是将某数据插入到一个有序序列后,该序列仍然有序。以下给出用数组描述该算法的例子:
将x插入一升序数列后,数列仍为升序排列。
#define n 10 main() {
int a[n]={-1,3,6,9,13,22,27,32,49},x,j,k; /*注意留一个空间给待插数*/ scanf(\
if(x>a[n-2]) a[n-1]=x ; /*比最后一个数还大就往最后一个元素中存放*/ else {
/*查找待插位置*/ j=0;
while( j<=n-2 && x>a[j]) j++;
/*从最后一个数开始直到待插位置上的数依次后移一位*/ for(k=n-2; k>=j; k- -) a[k+1]=a[k];
a[j]=x; /*插入待插数*/ }
for(j=0;j<=n-1;j++) printf(\ \}
3)折半查找(二分法查找)
顺序查找的效率较低,当数据很多时,用二分法查找可以提高效率。使用二分法查找的前提是数据必须有序。
二分法查找的思路是:要查找的关键值同数组的中间一个元素比较,若相同则查找成功,结束;否则判别关键值落在数组的哪半部分,就在这半部分中按上述方法继续比较,直到找到或数组中没有这样的元素值。
例如,任意读入一个整数x,在升序数组a中查找是否有与x等值的元素。 #define n 10 main()
{int a[n]={2,4,7,9,12,25,36,50,77,90}; int x,high,low,mid;/*x为关键值*/ scanf(\ high=n-1; low=0;
mid=(high+low)/2;
while(a[mid]!=x&&low if(x= =a[mid]) printf(\ else printf(\} 3.数值计算常用经典算法 1)级数计算 级数计算的关键是“描述出通项”,而通项的描述法有两种:一为直接法、二为间接法又称递推法。 直接法的要领是:利用项次直接写出通项式;递推法的要领是:利用前一个通项写出后一个通项。 可以用直接法描述通项的级数计算例子有: (1)1+2+3+4+5+…… (2)1+1/2+1/3+1/4+1/5+…… 等等。 可以用间接法描述通项的级数计算例子有: (1)1+1/2+2/3+3/5+5/8+8/13+…… (2)1+1/2!+1/3!+1/4! +1/5!+…… 等等。 下面举一个通项的一部分用直接法描述,另一部分用递推法描述的级数计算的例子: 计算级数 ?n?n?02?1?n!x????2?2的值,当通项的绝对值小于eps时计算停止。 #include float g(float x,float eps); main() {float x,eps; scanf(\ printf(\} float g(float x,float eps)