《管理运筹学》复习题及参考答案 - 图文 下载本文

内容发布更新时间 : 2024/12/26 14:55:16星期一 下面是文章的全部内容请认真阅读。

《管理运筹学》复习题及参考答案

第一章 运筹学概念

一、填空题

1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。 5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。 8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。 14.运筹学的系统特征之一是用系统的观点研究功能关系。 15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。 17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题

1. 建立数学模型时,考虑可以由决策者控制的因素是( A )

A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格 2.我们可以通过( C )来验证模型最优解。

A.观察 B.应用 C.实验 D.调查 3.建立运筹学模型的过程不包括( A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施 4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B ) A数量 B变量 C 约束条件 D 目标函数 5.模型中要求变量取值( D )

A可正 B可负 C非正 D非负 6.运筹学研究和解决问题的效果具有( A )

A 连续性 B 整体性 C 阶段性 D 再生性 7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。可以说这个过程是个(C) A解决问题过程 B分析问题过程 C科学决策过程 D前期预策过程 8.从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C ) A数理统计 B概率论 C计算机 D管理科学 9.用运筹学解决问题时,要对问题进行( B )

A 分析与考察 B 分析和定义 C 分析和判断 D 分析和实验 三、多选

1模型中目标可能为( ABCDE )

A输入最少 B输出最大 C 成本最小 D收益最大 E时间最短 2运筹学的主要分支包括( ABDE )

A图论 B线性规划 C 非线性规划 D 整数规划 E目标规划 四、简答

1.运筹学的计划法包括的步骤。 答:观察、建立可选择的解、用实验选择最优解、确定实际问题

2.运筹学分析与解决问题一般要经过哪些步骤? 答: 一、观察待决策问题所处的环境 二、分析和定义待决策的问题 三、拟订模型 四、选择输入数据 五、求解并验证解的合理性 六、实施最优解

3.运筹学的数学模型有哪些优缺点? 答:优点:(1).通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。(2).花节省时间和费用。 (3).模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。( 4).数学模型有能力揭示一个问题的抽象概念,从而能更简明地

揭示出问题的本质。 (5).数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。 模型的缺点 (1).数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。 (2).模型受设计人员的水平的限制,模型无法超越设计人员对问题的理解。 (3).创造模型有时需要付出较高的代价。

4.运筹学的系统特征是什么? 答:运筹学的系统特征可以概括为以下四点: 一、用系统的观点研究功能关系 二、应用各学科交叉的方法 三、采用计划方法 四、为进一步研究揭露新问题

5、线性规划数学模型具备哪几个要素? 答:(1).求一组决策变量xi或xij的值(i =1,2,?m j=1,2?n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章 线性规划的基本概念 一、填空题

1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 2.图解法适用于含有两个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有约束条件的解。 4.在线性规划问题的基本解中,所有的非基变量等于零。

5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关

6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。 7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。 12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。 13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解

16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。 18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。

19.如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。 20.表达线性规划的简式中目标函数为max(min)Z=∑cijxij。

21..(2.1 P5))线性规划一般表达式中,aij表示该元素位置在i行j列。 二、单选题

1. 如果一个线性规划问题有n个变量,m个约束方程(m

行解的个数最为_C_。

A.m个 B.n个 C.Cn D.Cm个 2.下列图形中阴影部分构成的集合是凸集的是 A

m

n

3.线性规划模型不包括下列_ D要素。

A.目标函数 B.约束条件 C.决策变量 D.状态变量 4.线性规划模型中增加一个约束条件,可行域的范围一般将_B_。

A.增大 B.缩小 C.不变 D.不定 5.若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是B__。

A.出现矛盾的条件 B.缺乏必要的条件 C.有多余的条件 D.有相同的条件

6.在下列线性规划问题的基本解中,属于基可行解的是 D

A.(一1,0,O) B.(1,0,3,0) C.(一4,0,0,3)0,5)

7.关于线性规划模型的可行域,下面_B_的叙述正确。

A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必是凸的

8.下列关于可行解,基本解,基可行解的说法错误的是_D__.

A.可行解中包含基可行解 B.可行解与基本解之间无交集

T

T

T

T

D.(0,一1,

C.线性规划问题有可行解必有基可行解 D.满足非负约束条件的基本解为基可行解

9.线性规划问题有可行解,则 A

A 必有基可行解 B 必有唯一最优解 C 无基可行解 D无唯一最优解 10.线性规划问题有可行解且凸多边形无界,这时 C A没有无界解 B 没有可行解 C 有无界解 D 有有限最优解 11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是 A A使Z更大 B 使Z更小 C 绝对值更大 D Z绝对值更小 12.如果线性规划问题有可行解,那么该解必须满足 D A 所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求 13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在D集合中进行搜索即可得到最优解。

A 基 B 基本解 C 基可行解 D 可行域 14.线性规划问题是针对 D求极值问题.

A约束 B决策变量 C 秩 D目标函数 15如果第K个约束条件是“≤”情形,若化为标准形式,需要 B A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量 16.若某个bk≤0, 化为标准形式时原不等式 D A 不变 B 左端乘负1 C 右端乘负1 D 两边乘负1 17.为化为标准形式而引入的松弛变量在目标函数中的系数应为 A A 0 B 1 C 2 D 3 12.若线性规划问题没有可行解,可行解集是空集,则此问题 B

A 没有无穷多最优解 B 没有最优解 C 有无界解 D 有无界解 三、多选题

1. 在线性规划问题的标准形式中,不可能存在的变量是D .

A.可控变量B.松驰变量c.剩余变量D.人工变量 2.下列选项中符合线性规划模型标准形式要求的有BCD

A.目标函数求极小值B.右端常数非负C.变量非负D.约束条件为等式E.约束条件为“≤”的不等式

3.某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m