人教版初一数学上册知识点归纳总结(精华版) 下载本文

内容发布更新时间 : 2024/12/22 10:42:13星期一 下面是文章的全部内容请认真阅读。

人教版七年级数学上册期末总复习

第一章有理数

1.有理数: (1)凡能写成

q(p,q为整数且p?0)形式的数,都是有理数,整数和分数统称有理数. p注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

???正整数?正整数正有理数??整数?零?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数 ???负整数?正分数?分数??负有理数??负分数?负分数??(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;

a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线. 3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-(a-b+c)= -a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 ? a+b=0 ? a、b互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

?a(a?0)?a(a?0)(2) 绝对值可表示为:a?? 或 ; 0(a?0)a??????a(a?0)??a(a?0)(3)

aa?1?a?0 ;

aa??1?a?0;

(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:

(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数;

注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.

- 1 -

人教版七年级数学上册期末总复习

等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10.有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零;

(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(简便运算)

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂

是正数。

0.12?0.01??2?1?1(5)据规律 2??底数的小数点移动一位,平方数的小数点移动二位.

10?100??????????????a015.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+1 16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能

- 2 -

人教版七年级数学上册期末总复习

用于证明.常用于填空,选择。

第二章 整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);

单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。

3.多项式:几个单项式的和叫多项式。 X k b 1 . c o m

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项

式的项;多项式里,次数最高项的次数叫多项式的次数;

?单项式5.整式? (整式是代数式,但是代数式不一定是整式)。

?多项式6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与字

母的排列顺序无关)。

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若

括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

第三章 一元一次方程

1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.

3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程). 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。 5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号). 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质

去 分 母----------同乘(不漏乘)最简公分母 去 括 号----------注意符号变化 移 项----------变号(留下靠前)

合并同类项--------合并后符号w w w .x k b 1.c o m

- 3 -

人教版七年级数学上册期末总复习

系数化为1---------除前面 10.列一元一次方程解应用题:

(1)读题分析法:………… 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:

(1)行程问题: 路程=速度·时间 速度?路程路程 时间?; 时间速度工作量工作量 工时?; 工时工效(2)工程问题:工作量=工作效率·工作时间 工效?工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b 1.c o m

(3)船在顺水、逆水中航行或者飞机在顺风、逆风中飞行的问题: 船在顺水中航行的速度=船在静水中航行的速度+水流速度 船在顺水中航行的速度=船在静水中航行的速度-水流速度 飞机在顺风中飞行的速度=飞机在无风时飞行的速度+风的速度 飞机在顺风中飞行的速度=飞机在无风时飞行的速度-风的速度 顺水逆水问题常用等量关系: 顺水路程=逆水路程 (4)商品利润问题: 售价=定价

几折售价?成本?100%; , 利润率?成本10利润问题常用等量关系: 售价-进价=利润 (5)配套问题:

(6)分配问题:【例】某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是笫二车间人数的一半。问需从第一车间调多少人到第二车间?

第四章 图形初步认识

(一)多姿多彩的图形

?立体图形:棱柱、棱锥、圆柱、圆锥、球等.

1、几何图形 ??平面图形:三角形、四边形、圆、多边形等.

主视图---------从正面看 ?2、几何体的三视图 ?左视图---------从左边看

? 俯视图---------从上面看

(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型.

- 4 -

人教版七年级数学上册期末总复习

3、立体图形的平面展开图

(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 (1)几何图形的组成

点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体.

(2)点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 线段 名称 直线 射线 a a a 图形 A B B B A A 端点个数 无 一个 两个 表示法 作法叙述 延长 直线a 直线AB(BA) 作直线a 作直线AB; 向两端无限延长 射线a 射线AB 作射线a 作射线AB 向一端无限延长 线段a 线段AB(BA) 作线段a; 作线段AB; 连接AB 不可延长 2、直线的性质 经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法

(2)用尺规作图法 4、线段的长短比较方法 (1)度量法 (2)叠合法 (3)圆规截取法

5、线段的中点(二等分点)、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点. 图形:

A M B

1符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.

26、线段的性质

两点的所有连线中,线段最短.简单地:两点之间,线段最短. 7、两点的距离

连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身). 8、点与直线的位置关系

(1)点在直线上(或者直线经过点) (2)点在直线外(或者直线不经过点). (三)角

- 5 -