内容发布更新时间 : 2024/12/23 22:55:08星期一 下面是文章的全部内容请认真阅读。
实验五 FIR数字滤波器设计与软件实现
plot(t,ywt);grid;
axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_w(t)'); title('(b) ??3y??éùoóμ?D?o?2¨D?') % (2) ó?μè2¨??×???±??ü·¨éè????2¨?÷
fb=[fp,fs];m=[1,0]; % è·?¨remezordoˉêy?ùDè2?êyf,m,dev dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];
[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % è·?¨remezoˉêy?ùDè2?êy hn=remez(Ne,fo,mo,W); % μ÷ó?remezoˉêy??DDéè?? Hw=abs(fft(hn,1024)); % ?óéè??μ???2¨?÷?μ?êì?D? yet=fftfilt(hn,xt,N); % μ÷ó?oˉêyfftfilt??xt??2¨ %ò????aó?μè2¨??éè??·¨μ???í?2?·?£¨??2¨?÷?eo?oˉêy£???2¨?÷ê?3?D?o?2¨D?)
figure(3);subplot(2,1,1) f=[0:1023]*Fs/1024;
plot(f,20*log10(Hw/max(Hw)));grid;title('(c) μíí¨??2¨?÷·ù?μì?D?') axis([0,Fs/2,-80,10]); xlabel('f/Hz');ylabel('·ù?è') subplot(2,1,2);plot(t,yet);grid;
axis([0,Tp/2,-1,1]);xlabel('t/s');ylabel('y_e(t)'); title('(d) ??3y??éùoóμ?D?o?2¨D?')
(5)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。
提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材;
2采样频率Fs=1000Hz,采样周期T=1/Fs; ○
3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,○
阻带截至频率fs=150Hz,换算成数字频率,通带截止频率?p?2?fp??0.24?,通带最大衰为0.1dB,阻带截至频率?s?2?fs??0.3?,阻带最小衰为60dB。
4实验程序框图如图2所示,供读者参考。 ○
实验五 FIR数字滤波器设计与软件实现
Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End
图2 实验程序框图
4.思考题
(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.
答:用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;
(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为?pl和?pu,阻带上、下截止频率为?sl和?su,试求理想带通滤波器的截止频率
?cl和?cu。
答:希望逼近的理想带通滤波器的截止频率?cl和?cu分别为:
?cl?(?sl??pl)/2, ?cu?(?su??pu)/2几种常用的典型窗函数的
通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。如本实验所选的blackman窗函数,其阻带最小衰减为74dB,而指标仅为60dB。
(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶
实验五 FIR数字滤波器设计与软件实现
数低?
答: 用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以其阶数低得多。
5.实验心得:
本次实验,我了解到如何使用窗函数法设计FIR滤波器,然后调用fftfilt函数对给定输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。通过运用MATLAB软件对所设计的FIR滤波器进行调试,观察其相位特性曲线,建立了线性相位相关概念。