内容发布更新时间 : 2024/12/22 19:37:28星期一 下面是文章的全部内容请认真阅读。
18.1 平行四边形的性质
第二课时
教学目的
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
1. 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
2. 培养学生的推理论证能力和逻辑思维能力. 重点、难点
3. 重点:平行四边形对角线互相平分的性质,以及性质的应用. 4. 难点:综合运用平行四边形的性质进行有关的论证和计算. 例题的意图分析
本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
例2是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.
1
课堂引入 1.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
(2)平行四边形的性质: ①具有一般四边形的性质(内角和是360?).
②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等. 2.【探究】:
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,
将ABCD绕点O旋转180?,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分. 例习题分析
例1(补充) 已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、
2
CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF. 证明:在 ABCD中,AB∥CD, ∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四边形的对角线互相平分), ∴ △AOE≌△COF(ASA).
∴ OE=OF,AE=CF(全等三角形对应边相等). ∵ ABCD,∴ AB=CD(平行四边形对边相等). ∴ AB—AE=CD—CF. 即 BE=FD.
※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.
解略
例2已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可
3
求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略. 随堂练习
1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC,求各边的长
③ 已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长
2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.
3.ABCD一内角的平分线与边相交并把这条边分成5cm,7cm的两条线段,则ABCD的周长是__ ___cm.
课后练习 1.判断对错
4
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD. ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等.( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( )
2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______. 3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=
15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积. 作业:练习册
5