甲醇生产净化工段的低温甲醇洗工艺设计 下载本文

内容发布更新时间 : 2024/5/31 10:15:28星期一 下面是文章的全部内容请认真阅读。

1绪论

1.1引言

在国内天然气供应紧张和国际油价、天然气价格连续上涨情况下,国内许多公司将目光转向用煤生产天然气的项目,煤气化生产合成气,合成气通过一氧化碳变换和净化后,通过甲烷化反应生产天然气的工艺在技术上是成熟的,煤气化、一氧化碳变换和净化是常规的煤化工技术,甲烷化是一个有相当长应用历史的反应技术,工艺流程短,技术相对简单,对于合成气通过甲烷化反应生产甲烷这一技术和催化剂在国际上有数家公司可供选择。对于解决国内能源供应紧张局面的各种非常规石油和非常规天然气技术路线进行综合比较后判断,煤气化生产合成气、合成气进一步生产甲烷(代用天然气)项目是一种技术上完全可行的项目,在目前国际和国内天然气价格下,这个项目在财务上具有很好的生存能力和盈利能力。另外,作为天然气产品,依赖国内日趋完善的国家、地区天然气管网系统进行分配销售,使得天然气产品的市场空间巨大。充分利用国内的低热值褐煤、禁采的高硫煤或地处偏远运输成本高的煤炭资源,就地建设煤制天然气项目,进行煤炭转化天然气是一个很好的煤炭利用途径。 1.2天然气的特性和用途

天然气系古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生之气态碳氢化合物,具可燃性,多在油田开采原油时伴随而出。天然气蕴藏在地下约3000—4000米之多孔隙岩层中,主要成分为甲烷,通常占85-95%;其次为乙烷、丙烷、丁烷等,比重0.65,比空气轻,具有无色、无味、无毒之特性,天然气公司皆遵照政府规定添加臭剂,以资用户嗅辨。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。广义的天然气是指地壳中一切天然生成的气体,包括油田气、气田气、泥火山气、煤撑器和生物生成气等。按天然气在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。只有游离态的天然气经聚集形成天然气藏,才可开发利用。

天然气是生产氨和氢气的理想原料,由其制成的合成气能被更有效、更清洁、更经济地(通过蒸汽转化)生产和净化,而用其他普通原料制成的合成气就逊色得多。对采用合成气制成的碳产品而言,如甲醇、羰基醇和费—托法制成的烃,这类产品有个小缺点:蒸汽转化法制成的合成气中氢气比例通常太低。

天然气的世界储量依然十分丰富,但在工业发达、经济发展更成熟的地区天然气资源正趋于殆尽,只是最近这种趋势更明显。前几年的冬天,美国天然气价格在需求高峰期已达到高位,而今年冬天,因北海天然气产量下降,造成欧洲天

然气供应紧缺。这些地区的天然气供应将逐渐依赖于进口,从战略角度考虑,这种状况颇为不利,甚至是危险的。世界其他一些工业正迅速发展的地区至今却无丰富的资源,一些地方甚至可能永远也没有天然气。 1.3中国天然气的发展现状

据国土资源部统计,2012年全国天然气年探明地质储量保持高速增长姿态,天然气勘察新增探明地质储量9612.2亿立方米,同比增长33%,居我国历史最高水平。新增探明技术可采储量5008.0亿立方米,同比增长36%。2012年天然气产量为1067.6亿立方米,同比增长5.4%,鄂尔多斯、塔里木、四川盆地仍是中国天然气主产区。2012年,我国天然气进口持续较快增长,全年累计进口天然气2933.1万吨(约合407.7亿立方米),同比增长29.9%,进口贸易额161.8亿美元,同比增长55.3%。2012年国内天然气表观消费量1445.7亿立方米,同比增长12.8%。

2013年全国天然气产量创下历史新高水平。数据显示,全年天然气产量1209亿立方米,其中常规天然气产量1177亿立方米,净增105亿方立方米,同比增长9.8%,连续3年保持1000亿立方米以上;煤层气和页岩气分别超过30亿立方米和2亿立方米。

2014年11月4日,中国国家发展和改革委员会发布了关于印发《国家应对气候变化规划(2014-2020年)》的通知,要求到2020年,控制温室气体排放行动目标要全面完成,要求单位国内生产总值二氧化碳排放要比2005年下降40%~45%,中国天然气消费量在一次能源消费中的比重将达到10%以上,利用量将达到3600亿立方米。这意味着,在未来中国能源消费结构中,天然气的黄金时代正在来临。 1.4煤气化制合成气

作为合成气的原料,煤由于呈固态不能采用蒸汽转化加以处理,所以不能将煤输送到蒸汽转化工艺所必需的固态催化剂中。不过,即使能够输送,煤所含杂质的类型和数量会迅速使蒸汽转化用的催化剂及下游其他对毒物敏感的催化剂失活。采用比轻石脑油重的液态烃,情况也是如此。解决办法是利用气化法,或部分氧化,煤与适量氧气或富含氧的空气以及蒸汽燃烧,以便与CO或在不完全燃烧中所生成的气态烃反应生成CO2和多余H2。燃烧过程为不采用催化剂、有蒸汽参与的反应提供充分热量,因而不会出现合成气反应塔内催化剂损坏的问题。

由煤和重质烃原料气化而来的合成气原料含氢、CO、CO2和剩余蒸汽,还包括气化剂不是纯氧的极少数情况下,来自空气中的氮、惰性气体,加上硫化氢,

羰基硫(COS)、煤烟和灰。气化后,首先采用传统气体净化方法脱除固体。然后使CO与蒸汽进一步反应生成CO2和H2,以调整气体组分使之更适于甲醇或其他产品合成,或者在氢或氨装置中尽量增加氢气量,无论最终采取何种办法脱除CO,都要尽量减少残留的CO。水气变换反应需要催化剂,即使在高温变换(HTS)工艺,原料气中的硫含量对所采用的更耐用的催化剂而言都显得较高,在采用转化法的氢和氨装置中,为进一步降低气体中CO含量需进行低温变换(LTS)反应,那么原料气中的硫对更敏感的催化剂而言浓度就显得更高了。因此在气体到达HTS催化剂之前,要将气体中的硫脱除到一定程度,但若将硫浓度脱除到不破坏LTS催化剂的低浓度就不切实际了,所以,即使气化法合成气装置含LTS工序,仍存在少量硫。

在必需脱除所有碳氧化物的情况下,象氨装置和制取高纯度氢气的装置,高温变换后用某些湿法净化工艺脱除大量CO2,随后再采用物理吸收法如变压吸附(PSA)、深冷分离或催化甲烷化脱除残留CO2和CO。最后一种方法的缺点是碳氧化物会转化回甲烷,在氨装置中,甲烷在合成回路中积累,增加了净化要求。

在采用清洁原料的蒸汽转化合成气装置中,脱除CO2的大型装置一般采用再生式化学洗涤溶液如活化热钾碱(Benfield,Vetrocoke,Catacarb,Carsol工艺)或活化MDEA。但重质原料生成合成气时,其中的杂质易与这些化学洗涤液发生不可逆反应,影响效率,并可能加重腐蚀。因此,气化法制合成气装置往往普遍采用可逆的物理吸收工艺脱除大量CO2。这在高压气化装置尤为适用。

几十年来,酸气脱除工艺在气化合成装置中一直占主导地位,因为该工艺极适合这种特殊条件。这就是低温甲醇洗净化工艺,由林德和鲁奇两家股份公司共同开发。工业化低温甲醇洗净化工艺为氨、甲醇、纯CO或含氧气体净化氢气和合成气,以达到脱除酸性气体之目的。

低温甲醇洗净化工艺是操作温度低于水冰点时利用甲醇(工业类“A”级)作为净化吸收剂的一种物理酸气净化系统。净化合成气总硫(H2S与COS)低于0.1×10-6(体积分数),根据应用要求,可将CO2物质的量浓度调整到百分之几,或百万分之几(体积分数)。气体去最终合成工艺(氨、甲醇、羰基合成醇、费—托法合成烃类等)之前,无需采取上游COS水解工艺或使气体通过另外的硫防护层。

与其他工艺相比,除了合成气硫浓度极低外,该工艺的主要优点是采用便宜易制取的甲醇作为溶剂,工艺配置极灵活,动力消耗很低。此外,原料气中的硫化合物与CO2在分离、精馏工序中被脱除,在克劳斯硫回收装置中进一步处理,分别作为纯CO2产品。表1介绍低温甲醇洗净化工艺生产出的主要产品规格。