内容发布更新时间 : 2024/11/17 6:50:33星期一 下面是文章的全部内容请认真阅读。
《小学数学统计与概率教学》
一、教学目的:通过本章的学习,使学生明确小学数学统计与概率的教育价值,了解其内容构成及目标要求,了解儿童学习统计与概率知识的主要特征,掌握小学数学统计与概率教学的过程与方法。 二、教学重点、难点
重点是小学数学统计与概率教学的过程与方法;难点是小学数学统计与概率教学设计。 三、教学内容:小学数学统计与概率教学概述、儿童学习统计与概率知识的主要特征、小学数学统计与概率教学的过程与方法。
§9.1 小学数学统计与概率教学概述
传统的小学数学课程体系中,只是在高年级编了一些简单的统计图表的知识,并且往往主要是将其当作工具性知识来学习的,因而也就将重点放在一些诸如绘制统计图表等的操作技能。而实际上,这部分知识不仅仅是一种技术,更是认识现实世界与处理日常生活的一种思想方法。 9.1.1 “统计与概率”内容的教育价值
(一)有助于培养学生以随机的观点来理解世界,形成正确的世界观和方法论
在以信息和技术为基础的社会里,数据日益成为一种重要的信息。为了更好地理解世界,人们必须学会处理各种信息,尤其是数字信息,收集、整理与分析信息的能力已经成为信息时代每一个公民基本素养的一部分。日常生活中,我们经常会听到“某地区受灾面积达到50%”“估计第三世界人口的增长率为每年4%”“这场足球赛,巴西队赢的可能性比较大”“坐火车旅游比较安全”“今天长沙地区的降水概率为60%”“买医疗保险对我有利”等语言,这实际上就是人们对客观世界中某些现象的一种描述,其中都涉及大量的数据。面对这些数据,人们就要作出分析和判断。也就是说,人们常常需要对大量纷繁复杂的信息作出恰当的选择与判断。随着社会的不断发展,统计与概率的思想方法将越来越重要。统计与概率所提供的“运用数据进行推理”的思考方法已经成为现代社会一种普遍适用并且强有力的思维方式。因此,义务教育阶段使学生熟悉统计与概率的基本思想方法,从而使他们逐步形成统计观念,进而形成尊重事实、用数据说话的态度。不仅如此,让学生了解随机现象,将有助于他们形成科学的世界观与方法论。
(二)有助于发展学生解决问题的能力
在学习统计与概率的过程中,将会涉及解决问题、计算、推理,以及整数、分数、比值等知识,这实际上是在学习新知识的同时复习和运用过去的旧知识,发展学生解决问题的能力。
(三)有助于培养学生对数学的积极情感体验
统计与概率这一领域的内容对学生来说是充满趣味和吸引力的。动手收集与呈现数据是一个活动性很强并且充满挑战和乐趣的过程,做概率游戏本身就是对思维的一种挑战,也是一个非常有趣的过程,这有助于培养学生对数学的积极情感体验。 9.1.2 “统计与概率”的内容构成及目标要求
统计与概率是随着新一轮基础教育课程改革,在小学数学课程标准中重新组织进去的一个模块,尤其是增加了“概率”部分,因此,与传统的“统计初步”内容有着根本性的区别。
(一)课程内容
“统计与概率”的课程内容,在数学意义上是一个整体,它们都是通过对数据的收集、整理、分析与描述,获得一些整体性规律的认识,从而帮助人们对某些事件作出合理
的推断与科学的预测。因此,两者在知识上构成相互关联的关系,例如,要认识某些随机现象,就必须运用某些统计的知识;而选用适当的方法收集一些数据,并对其进行统计学的处理后,人们就有可能从一些随机现象中寻找到某些规律性的认识。可见,它们都是将重心放在对数据意义的认识以及对数据收集的处理的能力上面。因此,在小学数学课程结构中,通常将这两部分内容融合在一起。
具体地看,小学数学课程内容结构中的“统计与概率”主要有如下一些基本部分构成: (1)知道数据在描述、分析、预测以及解决一些日常生活中的现象与问题的价值。 (2)学会一些简单的数据收集、整理、分析、处理和利用的基本的能力。 (3)会解读和制作一些简单的统计图表。
(4)认识一些随机现象,并能运用适当的方法来预测这些随机现象发生的可能性。 (二)目标要求
《数学课程标准》将“统计与概率”这部分知识的基本目标,按课程目标和内容目标两个部分分别予以表述。 1.课程目标
《数学课程标准》将课程目标按学段来表述,其中涉及“统计与概率”内容的,在小学阶段,分为两个学段的目标。 (1)第一学段(1~3年级)。《数学课程标准》指出:“对数据的收集、整理、描述和分析过程有所体验,掌握一些简单的数据处理技能;初步感受不确定现象。”
在这段文字的表述中,呈示着四个目标方向。第一,低年级的儿童学习统计与概率知识,以直观的活动为主,思考是伴随在诸如分类、排列等操作活动和直观观察之中的;第二,是以借助具体的操作和日常生活的例子,来获得数据的收集、整理和分析等过程体验为主的;第三,通过对实例的尝试性的操作活动逐步形成一些初步的数据处理技能;第四,以学生的经验为基础,并通过简单的尝试性试验来初步感受事件发生的确定性和不确定性。
(2)第二学段(4~6年级)。《数学课程标准》指出:“经历收集、整理、描述和分析数据的过程,掌握一些数据处理的技能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。”
在这段文字的表述中,呈示着三个目标方向。第一,中、高年级儿童的概率与统计知识学习,以直观的活动为主,同时还以体验为基本目标;第二,通过诸如抛硬币等操作活动来认识所谓的等可能性;第三,通过诸如掷骰子等操作活动来计算一些简单事件发生的可能性。 2.内容目标
与课程目标一样,小学数学中的“统计与概率”的内容目标 也是分学段来描述的。 (1)第一学段(1~3年级)。从课程内容看,第一学段的儿童将主要学习:能按照给定的标准或自己选择某个标准对物体进行比较、排列和分类,并在这种活动中体验活动结果在同一标准下的一致性与在不同标准下的多样性;知道可以从报刊、杂志、电视等媒体中获取数据信息,从而对数据的收集、整理、描述和分析过程有所体验;能通过实例认识统计表和象形统计图与条形统计图,能根据统计图表中的数据提出问题并回答简单的问题,或能根据简单的问题,使用适当的方法(包括计数、测量、实验等)收集数据,并将这些数据记录在统计表中,并能完成相应的图表;通过丰富的实例来了解平均数的意义,会求结果为整数的简单的平均数;能初步体验到有些事件发生是确定的,而有些则是不确定的,而且能知道事件发生的可能性是有大小的,并能对一些事件发生的可能性作出简单的描述。 (2)第二学段(4~6年级)。从课程内容看,第二学段的儿童将主要学习:经历简单的收集、整理、描述和分析数据的过程,初步体会数据可能会产生误差,并能根据实
际问题设计简单的调查表;通过实例认识折线统计图,根据需要选择不同的统计图来直观和有效地表示数据,并能解释统计结果;通过实例了解平均数、中位数、众数的意义,同时会求出并解释实际结果的意义,还能根据具体的问题选择适当的统计量来表示数据的不同特征;体验事件发生的等可能性以及游戏的公平性,会求一些简单事件发生的可能性或按要求设计一个方案;能对简单事件发生的可能性作出预测,并阐述自己的理由。
9.1.3 儿童学习统计与概率知识的主要特征
在开始学习之前,大部分儿童在描述一个现象的时候,往往简单地通过对现象的直观认识来描述,他们往往还会通过收集数据,并利用数据对这些现象进行更为精确的描述或预测。而儿童的统计与概率思想的形成,不仅有赖于他们对知识的学习,还有赖于遵循他们发展规律的教学组织。 (一)统计思想的形成
统计思想的本质是从局部观察到的资料的统计特征来推断整个系统的状态,或去判定某一论断能以多大的概率来保证其准确性,它是一种由局部推断整体的思想方法,是一种探知某个系统的规律性的科学。儿童在形成统计思想方法的过程中,主要会表现出如下一些特征:
(1)儿童的统计思想是在操作活动中逐步形成的。例如,一个学龄前的儿童,面对由许多香蕉和苹果组成的一堆水果时,在开始的时候,可能只会采用先数出香蕉的个数,再数出苹果个数的方法来比较哪种水果多。但是,当这些水果的数量足够多的时候,慢慢地,他可能就会想到将这些水果先分开来,然后再分别去数。随着经验的增长,他可能逐渐会想到将这些水果分类对应排列起来,于是,对这个儿童来说,基本的统计思想就产生了。
(2)儿童对数据的分析与利用能力的发展是一个渐进的过程,对一个学龄前的儿童来说,数字往往只是表示单个物体量的一个符号,并不用来描述自己观察到的现象。因此,数字之间往往是不相关的。例如,他可能关注到,有一个小朋友一天里吃了1个水果,吃了5块巧克力糖。然而,在他眼里,这些只不过就是一些静止的和不关联的数字,他也只是获得了一些事实。可是,对于一个低年级的小学生来说,他可能已经能从这两个似乎不关联的数字中,推断出“这个小朋友可能偏爱巧克力糖而不太喜欢水果”这样的结论来。而对于一个更高年级的儿童来说,他可能已经会从中受到启示,然后通过某些调查获取数据的方式,去选择类似“在校园里究竟是卖水果好些,还是卖巧克力糖好些”这样的行为了。
(3)在儿童的经验里,往往是通过对一组单一数据的比较,来作出简单的且具有唯一性的判断。当他们在最初接触到一组复杂数据的时候,往往就会采用经验中的方法来作出判断或无法作出判断。例如,小明一分钟拍了20下皮球,小红一分钟拍了25下皮球。这样的数据说明了什么?对于这个问题,一个学龄前的儿童也能作出准确的回答。可是,许多低年级的学生,面对如下一组数据的时候(表9-1),可能就不容易作出判断:“有A、B、C三个班举行长跑比赛,每个班级选出10人,其结果如下。现在你将如何确定这三个班级长跑比赛成绩的好坏?能不能排出这三个班级长跑比赛的名次并说明理由? 表9-1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 名次 班级 A B A C B B C A C C C B A A B