安徽省江南十校2018届高三数学冲刺联考二模试题文 下载本文

内容发布更新时间 : 2024/12/29 17:20:05星期一 下面是文章的全部内容请认真阅读。

都哦哦哦来了看看(2)当m取最大值时,解关于x的不等式x?3?2x?m?4.

都哦哦哦来了看看2018年“江南十校”高三学生冲刺联考(二模)

文科数学参考答案

一、选择题

1-5: CDACC 6-10: BBCAD 11、12:BB 二、填空题 13. 6 14. 三、解答题

217.解:(1)an?Sn?n?3n,

32 15. 3?5 16. (??,62?16) 3当n?1时,a1?S1?4?a1?2, 当n?2时,a2?a1?a2?10?a2?4, 又∵{an}是等差数列,

∴d?a2?a1?2,∴an?2?(n?1)?2?2n; (2)cn?11111?11??11????????????. 2an?1Sn(2n?1)(2n?1)n2?n2?2n?12n?1??nn?1?∴Tn?1?11111??11111?1??????????1????????????? 2?3352n?12n?1??223nn?1?1?1??1???1??1???? 2?2n?1??n?1??3?11?????. 2?2(2n?1)n?1?*当n?N且n逐渐增大时,Tn增大. ∴

53?Tn?. 6218.解:(1)假设该学校学生的考前焦虑与性别无关

500(30?160?270?40)23000K???9.967?6.635,

430?70?300?2003012∴在犯错误的概率不超过0.01的前提下,该学校学生的考前焦虑情况与性别有关; (2)男生、女生分别抽取3人,4人.记为A1,A2,A3,B1,B2,B3,B4.

都哦哦哦来了看看基本事件为:A1A2,A1A3,A1B1,A1B2,A1B3,A1B4,A2A3,A2B1,A2B2,A2B3,A2B4,

A3B1,A3B2,A3B3,A3B4,B1B2,B1B3,B1B4,B2B3,B2B4,B3B4.

满足条件的有:A1B1,A1B2,A1B3,A1B4,A2B1,A2B2,A2B3,A2B4,A3B1,A3B2,

A3B3,A3B4,B1B2,B1B3,B1B4,B2B3,B2B4,B3B4.

∴P?m186??. n21719.(1)证明:取AB的中点H,连接DH,CH,

??AB?平面CDH??ADB是等边三角形?AB?DH????AB?CD;

CD?平面CDH??CHDH?H?11h(2)解:V??S?ABC?h??1?h?,

333AC?BC?2?AB?CH∴若V最大,则h最大. ∴平面ADB?平面ABC.

此时S表?S?ABC?S?ADB?S?ACD?S?BCD?1?3?7. 20.(1)证明:设M(2pt,2pt)(t?0)则H??由y?2px(p?0)得y?∴直线l的斜率k2?∴k1?k2?(?2t)?222pt?p?,2pt?,直线HF的斜率k1???2t,2?p??, 2px,2p11??, 22pt22t1??1,∴l?HF. 2t又由抛物线定义MF?MH,∴l平分?HMF; (2)解:当p?1时,M(2t,2t),

2AB的方程:y?2t??2t(x?2t2),

∴A(1?2t,0),B(0,2t?4t).

23AByB2t?4t3∴???2t2?1,

AMyM2t都哦哦哦来了看看2??y?2t??2t(x?2t)?ty2?y?4t3?2t?0, 由?2??y?2x∴2t?yQ???yQ??2t?,

1t1tyB4t3?2t4t4?2t2???∴, 21AQ?yQ2t?12t?tABABAB4t4?2t22?2t2?2t2?1?4t2?1?(1,??). ∴??2t?1?2AMAQ2t?1a?lnx的定义域为(0,??), x1?(a?lnx)1?lnx?a且f'(x)?. ?x2x221.(1)解:f(x)?由f'(x)?0?1?lnx?a?0?lnx?1?a?0?x?e∴f(x)在(0,e1?a1?a,

)单调递增,在(e1?a,??)单调递减;

(2)解:a?0,f(x)?∴f(x)?g(x)?lnx, xlnxlnx?mx?m?2, xxlnx1?2lnx令u(x)?2,∴u'(x)?, 3xx由u'(x)?0?0?x?e,

∴u(x)在(0,e)单调递增,在(e,??)单调递减,

∴u(x)max?u(e)?lne11?,∴m?; e2e2e1??1?f(x)?2?1?? x?e??e?(3)证明:(x?1)?x???1(x?1)(lnx?1)2ex?1??x等价于. e?1xxe?1(x?1)(lnx?1)x?lnx,则p'(x)?,

xx21x?1令?(x)?x?lnx则?'(x)?1??,

xx令p(x)?∵x?1,∴?'(x)?0,∴?(x)在(1,??)单调递增,

都哦哦哦来了看看?(x)??(1)?1?0,p'(x)?0,∴p(x)在(1,??)单调递增,

∴p(x)?p(1)?2,∴

p(x)2, ?e?1e?12ex?1(1?ex)2ex?1令h(x)?x,则h'(x)?,

(xex?1)2xe?1∵x?1,∴1?e?0,∴h'(x)?0,h(x)在(1,??)单调递减, ∴当x?1时,h(x)?h(1)?x2, e?1∴

1?p(x)2??1???h(x),即(x?1)?x?x?f(x)?2?1??.

e?e?1e?1??e?222.解:(1)l的直角坐标方程3x?y?1?0,C的普通方程:x?4y;

1?x?3?t?2?(2)P(3,?2)在l上,l的参数方程为?(t为参数),

?y??2?3t??22?1?3??2t将l的参数方程代入C得:?3?t??4???2?,即t?123t?44?0, ??2?2????∴t1t2?44,

∴PAPB?t1t2?44.

??2x?2,x??5?23.解:(1)设f(x)?x?5?x?3,则有f(x)??8,?5?x?3,根据函数的单调性有

?2x?2,x?3?m?8.

即m的取值范围(??,8];

(2)当m?8时,x?3?2x?4,∴x?3?2x?4, 当x?3时,原不等式x?3?2x?4,x??7,∴x?3; 当x?3时,原不等式3?x?2x?4,x??,∴?131?x?3, 3??∴原不等式解集为??,???.

?1?3