内容发布更新时间 : 2024/12/23 19:40:17星期一 下面是文章的全部内容请认真阅读。
2.5.2 向量在物理中的应用举例教学设计
一、教学分析
向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.
用向量研究物理问题的相关知识.()力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;()动量是数乘向量;()功即是力与所产生位移的数量积.
用向量知识研究物理问题的基本思路和方法.①通过抽象、概括,把物理现象转化为与之相关的向量问题;②认真分析物理现象,深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题,并获得这个向量的解;④利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.
二、教学目标
.知识与技能:
通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤。
.过程与方法:
明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识. .情感态度与价值观:
通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.
三、重点难点
教学重点.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.
.归纳利用向量方法解决物理问题的基本方法.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
四、教学设想
(一)导入新课
思路.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.
思路.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量
在物理中的重要作用.由此自然地引入新课.
(二)应用示例
例 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
活动:这个日常生活问题可以抽象为如图所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚、、θ三者之间的关系(其中为、的合力),就得到了问题的数学解释.
图
在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察、、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.
用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.
解:不妨设,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道
1|G|?2|G| cos???2|F1|2cos2通过上面的式子,我们发现:当θ由°到°逐渐变大时,
??由°到°逐渐变大的值由大逐渐变小,22因此由小逐渐变大,即之间的夹角越大越费力,夹角越小越省力.
点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.
例2如图2.5-4,一条河的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸。已知船的速度v1?10km/h,水流的速度v2?2km/h,问行驶航程最短时,所用的时间是多
少?(精确到0.1min
A
分析:如图,已知v?v1?v2,v1?10km/h,v2?2km/hv?v2,求t
易知t=3.1min
例3.一个物体受到同一平面内三个力 的作用,沿北 偏东45°方向移动了8m,已知| |=2N,方向为北偏东 30°,| | =4N,方向为东偏北30°, | |=6N,方向为北 偏西30°,求这三个力的合力所做的功.
分析:用几何法求三个力的合力不方便,建立直角坐标系,先写出三个力的坐标,再求合力的坐标,以及位移的坐标,利用数量积的坐标运算.
北 3060西 O 3045东