高等数学第五章 习题解答 下载本文

内容发布更新时间 : 2024/5/2 9:07:12星期一 下面是文章的全部内容请认真阅读。

高等数学习题解答

(第五章 定积分)

惠州学院 数学系

1

习 题 5.1 1.证:kb?af(x)dx?klim?f(?)?xi?lim?kf(?)?xi??kf(x)dx

??0i?12nnb??0i?1a2.解:(1)令f(x)?1?sinx,则f‘(x)?2sinxcosx?sin2x?0 得驻点:x1? 由f()?2,?2,x2??,

?3f()?,242 得 minf(x)?1,maxf(x)?2

f(?)?1,5?4??3f()?, 42由性质,得 ????f(x)dx?2?

x?0, 21?x4(2)令f(x)?xarctanx,f‘(x)?arctanx? 所以f(x)在[3?3,3]上单调增加,?minf(x)?,maxf(x)??,33633333, (3?)??3xarctanxdx??(3?)3336333?2 即 ??3xarctaxndx??

933??3.解:(1)当0?x?1时,有x?x,且x?x不恒等于0,

3232??(x2?x3)dx?0,即

01?10x2dx??x2dx。

01(2)当0?x?1?6时,有sinx?x,且x?sinx不恒等于0,

??(x?sinx)dx?0,即

0?xdx??sinxdx。

0010111(3)令f(x)?x?ln(1?x),则f‘(x)?1?1x??0(0?x?1), 1?x1?x所以f(x)在[0,1]上单调增加,?f(x)?x?ln(1?x)?f(0)?0, 且x?lnx不恒等于0(0?x?1),所以

?xdx??ln1(?x)dx

0(4)令f(x)?ex?(1?x),则f‘(x)?ex?1?0(0?x?1),

所以f(x)在[0,1]上单调增加,?f(x)?ex?(1?x)?f(0)?0, 且e?(1?x)不恒等于0(0?x?1),所以

2xx2x?10exdx??(1?x)dx

014.解:在?0,1?区间内:x?x?e?e,由比较定理: 5. 证明:考虑??? 1 0edx?x? 1 0edx

x2??12,1??x2y?e上的函数,则 ?2?2y???2xe?x,令y??0得x?0

当x?????1?,0?时,y??0 2? 2

当x??0,??1??时,y??0 2??x2∴y?e1?x2在x?0处取最大值y?1,且y?e121?212在x??121122处取最小值e?12.

??212edx???e?xdx??21?2121dx,即2e????212e?xdx?2。

111π?12π26.解:平均值??1?xdx???.

1?(?1)??1224

习 题 5.2 1. 解:(1)?sinxdx??cosxx(2)?10xedx?2π20π20?1.

x2111x2e?0ed(x2)?22π20?0e?1. 2π2(3)?sin(2x?π)dx=

π2011sin(2x?π)d(2x?π)=?cos(2x?π)=?1. ?220e(4)

?e111lnx1edx=?lnxd(lnx)=ln2x?.

442x21111x11dxdx11arctan(5) ?===. arctan0100?x2x21010010100?0101?()101(6)

?π40tanx(tanx)dx==tanxd(tanx)?2cos2xxπ40π24=

01. 2?2.解:(1)limx?0xt20cost2dtx2cosx2?lim?1 x?01x2(2)lim(?edt)x?0?0x2e?limx?0?x0edt?limx?0t22?etdt0x20te2t2dtxe2x2xex2?lim2exex22x?0?2xe2x2

2?2

x?01?2x23.解: 当y'??x?1??0,得驻点x?1,

?limy''?1?0.x?1为极小值点,

3

极小值y(1)?1 (x?1)dx?- ?0214. 解:当x?0时,

??x???f?t?dt??0dt?0

00xx当0?x??时,??x??x11?cosx sintdt??022x?0当x??时,??x???f?t?dt??0f?t?dt??f?t?dt???x?0x1sintdt??0dt?1

?2当?0时?0,??1故??x????1?cosx?,当0?x??时

?2当x??时??1,5. 解:令从而

?f?t?dt?A,则f?x??x?2A,

0101?10f?x?dx???x?2A?dx?11?2A,A?? 221?2A 2即A?∴f?x??x?1

6.解:原式?limn???k?1nekn2kn1?e1ex1??dx?arctgex2x01?en10?arctge??4

dydydtcost7.解:???cott

dxdxsintdt

习 题 5.3 1.解:(1)

?a011??(3x?x?1)dx=?x3?x2?x??a3?a2?a

22??029129a(2)

?94?2312?12x(1?x)dx??(x?x)dx??x?x??45

42?46?3dx4?x23a(3)

??10x1??arcsin?

2063a0?(4)

0dx1x?arctanaa2?x2a?3a

4

003x4?3x2?11?2(5)? dx?3xdx?dx?1?22???1?1?14x?1x?10(6)

?2dx?ln1?x??1 ??e?11?x?(e?1)?2??(7)

?40tan2?d???40 (sec2??1)d???tan????4?1?40??(8)

?2?0?2??2?sinx dx??sinxdx??sinxdx??cosx?cosx?4

0?0?(9)

??20?x?1x?1? f(x)dx, 其中 f(x)??12xx?1??2解:

20f(x)dx??(x?1)dx??0121?x2?1?1?2812xdx???x???x3?? 2?2?0?6?13(10)

?3030?x0?x?1. f(x)dx,其中f(x)???x

1?x?3e?1解:

?f(x)dx??0xdx??31?23?132edx??x2??e?x??e?3?e?1

13?3?0?x???32.解:(1)

???3sin(x??3)dx??cos(x???3?)?3?cos?cos2??0 3?114(2)?2sin?cos?d????2cos?dcos???cos?2?

0004433?1?cos2u1?22cosudu?du??u(3)????22?662????26????cos2udu?

6?2?1??1???sin2u2?32(4)

???3?? ??686?2?a?0x2a?xdx令x?asint?22?20a4sin2tcos2tdt

?a4?8a4?16

4a?02sin2td2t令2t?u82?01?cos2udu 2?a4????1u0?sin2u0?? ?216??5