高等数学第五章 习题解答 下载本文

内容发布更新时间 : 2024/5/22 8:03:04星期一 下面是文章的全部内容请认真阅读。

y 1 A 3 A 5 π A 4 O2 π x - 1 ( 3 )

A6?1 y 1 A6O 1 x (4)

?1 (2)由上图(2)所示,?R?RπR2. R?xdx?A2?222(3)由上图(3)所示,?0cosxdx?A3?(?A4)?A5?A3?A5?(?A3?A5)?0. (4)由上图(4)所示,??1xdx?2A6?2?2. 解:s?12π1?1?1?1. 2?50(2t?1)dt

3. 解:任取分点a?x0?x1?x2???xn?b,把[a,b]分成n个小区间[xi?1,xi]

(i?1,2?n),小区间长度记为?i=xi-xi?1(i?1,2?n),在每个小区间?xi?1,xi? 上

任取一点?i作乘积f(?i)??xi的和式:

?f(?)??x??c?(xiii?1i?1nni?xi?1)?c(b?a),

记??max{?xi}, 则

1?i?n?bacdx?lim?f(?i)??xi?limc(b?a)?c(b?a).

??0i?n??04. 解:f(x)?x在[0,1]上连续函数,故可积,因此为方便计算,我们可以对?0,1? n等

2分,分点xi?

i,i?1,2,?,n?1;?i取相应小区间的右端点,故 nnnn2?i?1ni11?3f(?i)?xi???i2?xi??xi2?xi=?()nnni?1i?1i?1?ii?1n2

=

11111 =?n(n?1)(2n?1)(1?)(2?) 3n66nn11

当??0时(即n??时),由定积分的定义得:

4312=. xdx?0315. 解:先求f(x)?4x?2x?5在??1,1?上的最值,由

f?(x)?16x?6x?0, 得x?0或x?比较 f(?1)?11,f(0)?5,f()??323. 838fmin27,f(1)?7的大小,知 102427??,fmax?11,

1024由定积分的估值公式,得fmin?[1?(?1)]?即 ??1?1(4x4?2x3?5)dx?fmax??1?(?1)?,

127??(4x4?2x3?5)dx?22. ?15126. 解:(1)

?40112?xdx??(2?x)dx??(x?2)dx?(2x?x2)?(x2?2x)?4

02220224024x4233(2)?x|x|dx=?(?x)dx+?xdx=?0?2?24101?2x4117?=4+?. 4044π2ππ1(3)

?2π0|sinx|dx=

?π0sinxdx+

?2ππ(?sinx)dx=(?cosx)0?cosx4. 5=2+2=4.

(4)

?10max{x,1?x}dx=?(1?x)dx??1xdx?212017. 解:(1)

?10x100dx=

34x1011011?01. 101(2)

?412xdx=x23xx10?114. 3(3)?0edx?e1?e?1.

1100x1x(4)?0100dx=

ln1008. 解:(1)此极限是“

?099. ln1000”型未定型,由洛必达法则,得 0=limlim?x1sinπtdtx?1(?sinπtdt)?1xx?11?cosπx(1?cosπx)?=limsinπx11?lim()??

x?1?πsinπxx?1?ππ 12

x(2)lim?0?arctant?x?122dt?型?x???x???lim?arctanx?12?x?1?2?122?lim2xx2?1?arctanx?x2x???

x1??lim2x???1arctanx2?2?1?22x ?lim1?2?arctanx??x???x4x1219. 解:

?f?x?dx???x?1?dx??001812?1?xdx??x2?x??x3? 2?2?0613n1n?1i12??lim? ??xdx??0n??n?nnn3i?1?12?1?10.解:原式?lim?n???n?11.解:将两边对x求导得

e2???ndy?cosx?0 dxcosxdy ∴??y

dxey12. 答:(1)不正确,应该为:

?π2π?2cosx?cos3xdx?2?(cosx)sinxdx

π2012π2012=?2(2)不正确,应该为:

?(cosx)d(cosx)??4cosx332π2?04 3? =2

1?11?xdx??2π2π?21?(sint)d(sint)??(cost)2dt

2π2π?2?π20(cost)2dt?2?π20π1?cos2t1dt?(t?sin2t)?.

22202π213. 解:(1)令x=4sint,则16?x?4cost,dx?4costdt,当x= 0 时,t= 0;当x= 4 时,t?40π,于是 2?220π20π20?16?xdx=?4cost?4costdt??8(1?cos2t)dt?(8t?4sin2t)x111x1?arctan. d()=arctanx2022221?()2213

1?4π

111(2)?=dx04?x22?01

???(3)

??20sinxcosxdx???3202114cosxdcosx??cosx?

4403e(4)

e1e111ln2xdx??ln2xd(lnx) ?(lnx)3?[(lne)3?(ln1)3]?

1333x1x2(5)令e?1?t,x?lnt?1,dx???2tdt,x?0时t?0;x?ln2时,t?1. t2?1于是

?ln201?2t21?x?1?e?1dx??2dt?2??1?dt???2t?arctant?21??? 2?00t?10?1?t??4?x15u2u(6) 令5?4x?u,则x??,当x?1时,dx??du.当x??1时,u?3,u?1.

442原式?44112. 5?udu??3861??5x1ee5xe5x5x(5x?1)??d(5x?1) 14. 解:(1)?(5x?1)edx=?(5x?1)d=

000555016e5?1e5x?=

55(2)

1?e5.

0?e?10ln(x?1)dx?xln(x?1)e?1e?10??e?10e?1x1)dx dx =e?1??(1?0x?1x?1 =e?1?[x?ln(x?1)]0=lne=1 (3)

?10eπxcosπxdx=?eπxd011sinπxsinπx1πx?x ?esinπx1?de0?0πππ1cosπxcosπx1?x )?eπxcosπx1?de0?0πππ

?0??eπxsinπxdx=??eπxd(?00111??(eπ?1)?π?10eπxcosπxdx

移项合并得

?10eπxcosπxdx??1π(e?1). 2πx43x13x??e) (4)?(x?3?e)xdx??xd(004ln3313x3x141xx43x13x3x13x?x(??e)??(??e)dx

044ln33ln3301 14

1313x53x13ln3?22314???e?(?2?e3x)??e? 24ln3320ln39945ln30??????13x33???lnsinx??dx????3xdctgx??xctgx????3ctgxdx??(5)??3 2?49?sinx444??44?1?13?32?13?13?????ln ???ln?????ln?49??49?2222????(6)

?4lnxx1dx?2?4414441???lnxdx?2xlnx??xdlnx??2?4ln2??xdx? ??111??x???8ln2?2?xdx?8ln2?4

1?1215. 解:(1)

??1?1(x?1?x)dx=

22?1?11dx?2?x1?x2dx?2?0?2

?11??(2) 原式?2204cosxdx?2?2420?2cosx?dx

22??2?20?1?cos2x??0?0dx?2?21?2cos2x?cos22xdx

?20??2?22cos2xdx??2x0????1?cos4x?dx

????2sin2x02?16. 解:

??2b?212313cos4xd4x???sin4x?? ?042420??b11lndx?xlnx1??x?dx?blnb?(b?1)?blnb?b?1

1xb由已知条件得 blnb?b?1?1

blnb?b?0,即blnb?b

?b?0,?lnb?1, 即得b?e。

17. 证明:(1)设x???2?t,则dx??dt.且当x?0时,t??2;当x??2,时t?0.

?20f(sinx)dx????02?0?????f?sin??t??dt????f?cost?dt??2f(cosx)dx

0??2??2 15