高频实验:小信号调谐放大器实验报告要点 下载本文

内容发布更新时间 : 2024/11/15 22:38:56星期一 下面是文章的全部内容请认真阅读。

实验一 小信号调谐放大器实验报告

一 实验目的

1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器

1.小信号调谐放大器实验板 2.200MH泰克双踪示波器 3. FLUKE万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理

所谓“小信号”,通常指输入信号电压一般在微伏?毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC调谐回路)。这种放大器对谐振频率f0及附近频率的信号具有最强的放大作用,而对其它远离f0的频率信号,放大作用很差,如图1-1所示。

K( f ) / K010.7070.10f0B0.7B0.1f

图1.1 高频小信号调谐放大器的频率选择特性曲线

小信号调谐放大器技术参数如下:

1.增益:表示高频小信号调谐放大器放大微弱信号的能力

2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。

2.实验电路

原理图分析:

In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。

通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数?,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。

电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

感有初级回路和次级回路组成,中间有铁芯耦合,实验箱上讲电感的初级回路和次级回路封装在中周中,调节中周里的铁芯位置可以改变电感值和耦合强度,从而改变LC谐振回路的谐振频率。滑动变阻器RW1是阻尼电路,可以改变回路的品质因素和电压增益。电阻R4是负载电阻,有跳线J3决定是否连接负载电阻。

电容C4是输出信号的隔直电容,电容C5,C6是直流电源的去耦电容。按下电源开关,LED亮说明电路正常上电。

四、实验内容

1.静态工作点与谐振回路的调整。 2.放大器的幅频特性及通频带的测试。

3.测试品质因数对放大器的幅频特性及通频带的影响。 五、实验步骤及数据记录分析 1.仿真

利用实验室计算机上提供的Multisim9软件,参照实验电路图,进行仿真。Multisim9仿真电路如下:

实验中在实验箱上通过FLUKE万用表测得R1、R2、R3、R4数值如下:R1=0.997KΩ,R2=4.599KΩ,R3=8.0122KΩ,R4=1.990KΩ。

仿真:

1. 改变直流电流Ie,研究Ie逐渐增大时小信号放大器电压增益的变化。