七年级数学二元一次方程组应用题及答案 下载本文

内容发布更新时间 : 2025/1/10 4:52:00星期一 下面是文章的全部内容请认真阅读。

七年级,数学,二元,一次,方程组,应用题,及,二元一次方程组解应用题

列方程解应用题的基本关系量:

行程问题:速度×时间=路程

顺水速度=静水速度—水流速度

逆水速度=静水速度—水流速度

工程问题:工作效率×工作时间=工作量

浓度问题:溶液×浓度=溶质

银行利率问题:免税利息=本金×利率×时间

二元一次方程组解决实际问题的基本步骤:

1、审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)

2、考虑如何根据等量关系设元,列出方程组. (设未知数,列方程组)

3、列出方程组并求解,得到答案.(解方程组)

4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)

列方程组解应用题的常见题型:

和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量

产品配套问题:加工总量成比例

速度问题:速度×时间=路程

航速问题:此类问题分为水中航速和风中航速两类

顺流(风):航速=静水(无风)中的速度+水(风)速

逆流(风):航速=静水(无风)中的速度--水(风)速

工程问题:工作量=工作效率×工作时间

(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题)

增长率问题:原量×(1+增长率)=增长后的量

原量×(1+减少率)=减少后的量

浓度问题:溶液×浓度=溶质

银行利率问题:免税利息=本金×利率×时间

税后利息=本金×利率×时间—本金×利率×时间×税率

利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%

盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量

数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示

几何问题:必须掌握几何图形的性质、周长、面积等计算公式

年龄问题:抓住人与人的岁数是同时增长的

一元一次方程方程应用题归类分析

1. 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?

分析:等量关系为:

解:设1990年6月底每10万人中约有x人具有小学文化程度

2. 等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积。

例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数)

分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积 下降的高度就是倒出水的高度

解:设玻璃杯中的水高下降xmm

3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变。

例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

分析:列表法。

每人每天 人数 数量

大齿轮

16个 x人