内容发布更新时间 : 2024/12/23 10:45:40星期一 下面是文章的全部内容请认真阅读。
一光合作用中的第一个三碳糖。(3)更新阶段。光合碳循环中形成的3-磷酸甘油醛,经过一系列的转变,再重新形成RuBP的过程。
9、光合作用卡尔文循环的调节方式有哪几个方面?
答:(1)酶活性调节。光通过光反应改变叶的内部环境,间接影响酶的活性。如间质中pH的升高,Mg2+浓度升高,可激活RuBPCase和Ru5p激酶等。如果在暗中这些酶活性下降。 (2)质量作用的调节。代谢物的浓度可以影响反应的方向和速率。
(3)转运作用的调节。叶绿体内的光合最初产物一磷酸丙糖,从叶绿体运到细胞质的数量,受细胞质里的Pi数量所控制。Pi充足,进入叶绿体内多,就有利于叶绿体内磷酸丙糖的输出,光合速率就会加快。 10、在维管束鞘细胞内,C4途径的脱羧反应类型有哪几种?
答:(1)NADP苹果酸酶类型;(2)NAD苹果酸酶类型;(3)PEP羧激酶类型。 11、简述CAM植物同化C02的特点。
答:这类植物晚上气孔开放,吸进C02,在PEP羧化酶作用下与PEP结合形成苹果酸,累积于液泡中。白天气孔关闭,液泡中的苹果酸便运到细胞质,放出C02,放出的CO2参与卡尔文循环形成淀粉等。具有两步羧化的特点。
12、氧抑制光合作用的原因是什么?
答:(1)加强氧与C02对RuBP的结合竞争,提高光呼吸速率。(2)氧能与 NADP+竞争接受电子,使NADPH合成量减少,使碳同化需要的还原能力减少。(3)氧接受电子后形成的超氧阴离子会破坏光合膜。(4)在强光下氧参与光合色素的光氧化,破坏光合色素。 13、作物为什么会出现光合“午休”现象?
答:植物种类不同、生长条件不同,造成光合“午休”的原因也不同。有以下几种原因:(1)中午水分供给不足、气孔关闭。(2)C02供应不足。(3)光合产物淀粉等来不及分解运走,累积在叶肉细胞中,阻碍细胞内C02的运输。(4)中午时的高温低湿降低了碳同化酶的活性。(5)生理钟调控。 14、追施N肥为什么会提高光合速率?
答:原因有两方面:一方面是间接影响,即能促进叶片面积增大,叶片数目增多,增加光合面积。另一方面是直接影响,即促进叶绿素含量急剧增加,加速光反应。氮亦能增加叶片蛋白质含量,而蛋白质是酶的主要组成成分,使暗反应顺利进行。总之施N肥可促进光合作用的光反应和暗反应。 15、分析植物光能利用率低的原因。
答:光能利用率低的原因:(1)辐射到地面的光能只有可见光的一部分能被植物吸收利用。(2)照到叶片上的光被反射、透射。吸收的光能,大量消耗于蒸腾作用。(3)叶片光合能力的限制。(4)呼吸的消耗。(5)CO2、矿质元素、水分等供应不足。(6)病虫危害。
16、作物的光合速率高产量就一定高,这种说法是否正确,为什么?
答:不正确。因为产量的高低取决于光合性能的五个方面,即光合速率、光合面积、光合时间和光合产物分配与消耗。
17、为什么说CO2 是一种最好的抗蒸腾剂?
答:所有的抗蒸腾剂都是通过降低气孔导度来减少蒸腾,气孔导度降低的同时不可避免地限制了CO2 向叶肉内的扩散,降低了光合速率。而增加CO2 不仅可以降低气孔导度减少蒸腾,同时也增加了CO2向叶肉内的扩散速度,不至于因气孔导度的降低使光合下降。
18、把大豆和高粱放在同一密闭照光的室内,一段时间后会出现什么现象?为什么?
答:大豆首先死亡,一段时间后高粱也死亡。因为大豆是C3植物,它的CO2补偿点高于C4植物高粱。随着光合作用的进行,室内的CO2浓度越来越低,当低于大豆的CO2补偿点时,大豆便没有净光合只有消耗,不久便死亡。此时的CO2浓度仍高于高粱的CO2补偿点,所以高粱仍然能够进行光合作用,当密闭室内的CO2浓度低于高粱的CO2补偿点时,高粱便因不能进行光合作用而死亡。 19、如何证明C3途径CO2的受体是RuBP,而CO2固定后的最初产物是3-PGA?
答:给植物饲喂标记的14CO2,在不同的照光时间下,分别浸在沸酒精中将植物杀死,提取14C化合物,
用纸层析分析结合放射自显影方法追踪14C在各种化合物出现的先后次序。最早标记的化合物即为CO2固定后的最初产物,在C3植物中最早标记的化合物是3-PGA。用同样的技术结合动力学实验结果表明,当CO2浓度突然下降时,RUBP的量急剧增高,而3-PGA的量则相应急剧下降,说明3-PGA是RuBP的羧化产物,故CO2浓度降低时,3-PGA突然下降,同时说明3-PGA可转变为RuBP,否则RuBP的量不至于升高。
20、糖浓度与能量供应状况如何调节有机物质的运输?
答:叶片中蔗糖的浓度对输出速率有明显的调节作用。叶片中蔗糖的浓度高于某一阈值时,明显地提高输出率,低于这一阈值时,则明显地降低输出率。前者属于可运库,后者属于非运库。同化物的主动运输需要能量供应。充足的能量供应有利于同化物的运输。ATP的作用一方面作为直接的动力,另一方面可通过提高膜透性而对运输起作用。 21、植物激素如何调节有机物质的运输与分配?
答:植物激素对有机物质的运输分配有着重要的影响。除ETH以外,其它几种激素都有促进有机物质运输的作用。IAA有吸引有机物质向它所在的器官积累的功能。关于植物激素促进有机物运输的机理有以下几个方面的解释:(1)激素与质膜上的受体结合,产生去极化作用,降低膜势;(2)植物激素改变膜的物理、化学性质,提高膜透性;(3)植物激素促进RNA与蛋白质的合成,合成某些与同化物运输有关的酶。
22、何谓源-库单位?为什么在有机物质的分配问题上会出现源-库单位的现象?
答:源的同化产物主要供给相应的库。相应的源与库以及二者之间的输导系统,共同构成一个源-库单位。源库单位的形成首先符合器官的同伸规律(相应部位的根、茎、叶、蘖在生长时间上的同步性);其次,还与维管束的走向,距离远近有关。它决定了有机物质分配的特点。
23、叶片中制造的有机物质是如何装载到韧皮部筛管分子的?有哪些证据证明有机物质的装载是一个主动过程?
答:首先,叶片制造的光合产物蔗糖释放到质外体,然后蔗糖分子再进入筛管-伴胞复合体。质外体中的蔗糖分子进入筛管-伴胞复合体是与质子协同进行的。因此,有人提出了糖-质子协同转移模型。该模型的要点如下:在筛管分子或伴胞的质膜中,H+-ATP酶不断地将H+泵到细胞壁(质外体),质外体中H+浓度较共质体高,于是形成了跨膜的电化学势差。当H+趋于平衡而回流到共质体时,通过质膜上的蔗糖/H+共向转运器,H+与蔗糖一同进入筛管分子。 24、有机物质的分配与产量的关系如何?
答:作物的经济产量=生物产量×经济系数,而经济系数与同化物的分配有关。在一定的营养生长的基础上,应该促使光合产物尽可能地分配到产品器官,提高经济系数。否则,生物产量高,经济产量并不一定高。
25、为什么“树怕剥皮”?
答:因为根系需要地上部供应有机营养,而叶片制造的有机物质正是通过韧皮部向下运输的。树剥皮后,韧皮部被破坏,影响了有机物质的运输,时间一长就会影响根系的生长,进而影响地上部的生长。 26、“三蹲棵”在生产上有何意义?
答:“三蹲棵”是指秋季将玉米连根拔出,并不立即收获,将玉米连穗带棵放置一段时间后再收获,这样可以提高产量5%~10%。主要是利用有机物质可以再利用的特点,将茎杆中积累的有机物质充分的转运到穗中,从而提高产量。
27、一株马铃薯在100天内块茎增重250克,其中有机物质占24%,地下茎韧皮部横截面积0.004cm2,求同化物运输的比集运量。
答:比集转运速率=单位时间内转运的物质的量/韧皮部的横截面积=(250×40%)
/ (0.004×24×100)=6.25(g/cm2.h)答:同化物运输的比集转运速率为6.25g/cm2.h。 七、论述题
1、试评价光呼吸的生理功能。
答:光呼吸是具有一定的生理功能的,但也有害处。(1)回收碳素:通过C2循环可回收乙醇酸中3/4的碳素(2个乙醇酸转化1个PGA,释放1个CO2)。(2)维持C3光合碳循环的运转:在叶片气孔关闭或外界CO2浓度降低时,光呼吸释放的CO2能被C3途径再利用,以维持C3光合碳循环的运转。(3)防止强光对光合机构的破坏:在强光下,光反应中形成的同化力会超过暗反应的需要,叶绿体中NADPH/NADP、ATP/ADP的比值增高,由光激发的高能电子会传递给O2,形成超氧阴离子自由基O2.-,O2.-对光合机构具有伤害作用,而光呼吸可消耗过剩的同化力和高能电子,减少O2.-的形成,从而保护光合机构。(4)消除乙醇酸:乙醇酸对细胞有毒害作用,它的产生在代谢中是不可避免的。光呼吸是消除乙醇酸的代谢,使细胞免受伤害。另外,光呼吸代谢中涉及多种氨基酸的转化过程,它可能对绿色细胞的氮代谢有利。
有害方面:减少了光合产物的形成和累积,不仅不能贮备能量,还消耗大量能量 2、C4植物比C3植物的光呼吸低,试述其原因?
答:C4植物光呼吸低。因为光呼吸是由RuBP加氧酶催化RuBP加氧造成的。C4植物在叶肉细胞中只进行由PEP羧化酶催化的羧化活动,且PEP羧化酶对C02亲和力高,固定C02的能力强,在叶肉细胞形成C4二羧酸之后。再转运到维管束鞘细胞,脱羧后放出C02,就起到了”CO2泵”的作用,增加了维管束鞘细胞中的CO2浓度,抑制了鞘细胞中Rubisco的加氧活性并提高了它的羧化活性,有利于CO2的固定和还原,不利于乙醇酸形成,不利于光呼吸进行,所以C4植物光呼吸值很低。
而C3植物,在叶肉细胞内固定C02,叶肉细胞的CO2/02的比值较低,此时,RuBP加氧酶活性增强,有利于光呼吸的进行,而且C3植物中RuBPP羧化酶对CO2亲和力低,此外,光呼吸释放的CO2,不易被重新固定。
3、论述提高植物光能利用率的途径和措施有哪些?
答:(1)增加光合面积:①合理密植;②改善株型。(2)延长光合时间:①提高复种指数;②延长生育期;③补充人工光照。(3)提高光合速率:①增加田间CO2浓度;②降低光呼吸;③减缓逆境对光合的抑制作用;④减轻光合午休;⑤延缓早衰。 4、请说明测定光呼吸的原理。
答:(1)光呼吸受氧浓度的影响 当大气中含氧量从21%降至1~3%时,C3植物的净光合率约增高30~50%,增加的这部分就代表在高氧气条件下光呼吸的消耗,因此可以分别测定3%和21% O2下的光合速率,两者之差便为光呼吸速率。
(2)测定叶片在光下的吸氧量 在光下测定在无CO2空气中叶片的吸氧量。也可以用18O2标记,测定叶片在光下对18O2的吸收速率。
(3)测定无CO2空气中CO2的释放量 在光下,通入无CO2的气体到叶室中,然后测定叶片CO2的释放量。也可以用14CO2饲喂,先使叶片在光下同化14CO2一段时间,然后通入无CO2的气体,并测定叶片释放出的14CO2量。可以用光下释放的14CO2量和黑暗中释放的14CO2量的比值表示。 (4)测定从光转暗后的CO2猝发 将C3植物叶片放入叶室,照光一段时间后停止照光,则有CO2释放高峰,一般认为停止光照后的CO2猝发为光呼吸的残余。 5、试述环境因素对有机物质运输的影响?
答:环境因素水分、光照、温度、矿质等,对同化物的运输均有较大的影响。 温度:糖的运输速率以20℃~30℃最快,高于或低于这个温度范围,运输速率下降。 光照可以通过光合作用,影响同化物的运输与分配。功能叶白天的输出率高于夜间。 水分胁迫使水势降低,光合降低,叶片中可运态蔗糖的浓度降低,影响输出速率。 矿物质,如N、P、K、B等都会对有机物质的运输产生影响。
N:N多,营养生长过旺,不利于物质向产品器官输出;N少则会引起叶片的早衰,C/N比适中对运输有利。
P:P可以促进光合,促进可运态蔗糖浓度的提高,促进ATP的合成,所以可以促进物质的运输。 K:K能促进库内蔗糖向淀粉的转化,维持库源两端的压力差,有利于物质的运输。
B:B与糖结合成复合物,有利于透过质膜,从而有利于物质的运输。
6、试述收缩蛋白学说与细胞质泵动学说的主要内容,这两个学说主要解决了运输方面的哪些问题? 答:收缩蛋白学说认为,筛管分子的内腔有一种由微纤丝相连接的网状结构,微纤丝由收缩蛋白的收缩丝组成。收缩蛋白分解ATP,将化学能转化为机械能,通过收缩与舒张进行同化物的长距离运输。 细胞质泵动学说认为,筛管分子内腔的细胞质呈几条长丝,形成胞纵连束,纵贯筛管分子,在束内呈环状的蛋白质反复地、有节奏的收缩与舒张,把细胞质长距离泵走,糖分随之流动。
这两个学说共同的特点是,认为有机物质的运输需要能量供应,同时解决了筛管中有机物质的双向运输问题。
7、试述作物产量形成的库-源关系。
答:作物产量形成的库-源关系有三种类型:(1)源限制型;(2)库限制型;(3)源库协调型。源与库共同存在于一个统一体中,两者相互依赖、相互制约。要高产不仅需要有大的源与大的库,还要源与库的协调统一。同时,库大会促进源,源大会促进库;库小会抑制源,源小会抑制库。两者相互依赖、相互制约。适当地增源或增库以及协调二者之间的关系,都会达到增产的效果。 8、植物体内有机物质运输分配的规律如何?
答:有机物质的分配受供应能力、竞争能力及运输能力的影响。
供应能力 是指源的同化物能否输出以及输出的多少。当源的同化物产生较少,本身生长又需要时,基本不输出;只有同化物形成超过自身需要时,才能输出。且生产越多,外运潜力越大。源似乎有一种“推力”,把叶片制造的光合产物的多余部分向外“推出”。
竞争能力 是指库对同化物的吸引和‘争调’的能力。生长速度快、代谢旺盛的部位,对养分竞争的能力强,得到的同化物则多。
运输能力 包括与源、库之间的输导系统的联系、畅通程度和距离远近有关。源、库之间联系直接、畅通,且距离又近,则库得到的同化物就多。 在这三中因素中,竞争能力起着重要作用。
9、何谓压力流动学说?实验依据是什么?该学说还有哪些不足之处?
答:又叫集流学说。其要点是同化物在SE-CC复合体内随着液流的流动而移动,而液流的流动是由于源库两端之间SE-CC复合体内渗透作用所产生的压力势差而引起的。在源端(叶片),光合产物被不断地装载到SE-CC复合体中,浓度增加,水势降低,从邻近的木质部吸水膨胀,压力势升高,推动物质向库端流动;在库端,同化物不断地从SE-CC复合体卸出到库中去,浓度降低,水势升高,水分则流向邻近的木质部,从而引起库端压力势下降。于是在源库两端便产生了压力势差,推动物质由源到库源源不断地流动。
其实验依据是:(1)溢泌现象表明,筛管内有正压力的存在;(2)在接近源、库的两端存在着糖的浓度梯度,这种梯度的大小与运输相一致;(3)生长素实验表明,生长素的运输能够随着筛管内集流流动。
其不足之处是:(1)无法解释筛管中有机物质的双向运输问题;(2)物质在筛管进行集流运动,其运动速度很快,需要的压力差并非筛管两端的蔗糖浓度差所能给出的。 10、试绘制一般植物的光强-光合曲线,并对曲线的特点加以说明。
答:如图所示,在暗中叶片无光合作用,只有呼吸作用释放CO2(图中的OD为呼吸速率)。随着光强的增高,光合速率相应提高,?当达到某一光强时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强称为光补偿点。在一定范围内,光合速率随着光强的增加而呈直线增加;但超过一定光强后,光合速率增加转慢;当达到某一光强时,光合速率就不再随光强增加而增加,这种现象称为光饱和现象。光合速率开始达到最大值时的光强称为光饱和点。植物出现光饱和点的实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。因此,限制饱和阶段光合作用的主要因素有CO2扩散速率(受CO2浓度影响)和CO2固定速率(受羧化酶活性和RuBP再生速率影响)等。
在光强-光合曲线的不同阶段,影响光合速率的主要因素不同。弱光下,光强是控制光合的主要因素,曲线的斜率即为表观量子效率。曲线的斜率大,表明植物吸收与转换光能的色素蛋白复合体可能较多,利用弱光的能力强。随着光强增高,叶片吸收光能增多,光化学反应速率加快,产生的同化力多,于是CO2固定速率加快。此外,气孔开度、Rubisco?活性及光呼吸速率也影响直线阶段(A)的光合速率,因为这些因素都会随光强的提高而增大,其中前二者的提高对光合速率有正效应,后者有负效应。