内容发布更新时间 : 2024/12/23 2:03:15星期一 下面是文章的全部内容请认真阅读。
材料力学课程论文
任意方向线应变计算公式的两种推导方法
姓名:黄信
班级:机械0907班 学号: 200941008
任意方向线应变计算公式的两种推导方法
黄信
(机械0907班, 200941008)
摘 要:《材料力学》教材给出了平面应力状态下任意斜截面上的应力计算公式,没有给出任意方向线应变的计算公式,而在实际应用中有时任意方向线应变的确定又十分必要。本文给出了平面应力状态下任意方向线应变的计算公式的两种推导方法。 关键词:平面应力状态;任意方向;线应变;推导
1 引言
在实际工程结构中,有很多杆件往往同时发生两种或两种以上的基本变形,即组合变形。对于各种组合变形杆的应力分析可采用应变花电测法,而这种情况下主应力的大小和方向往往是未知的。要确定主应力的大小和方向,首先得确定主应变的大小和方向。而要确定主应变的大小和方向,由教材中确定主应力大小和方向的方法联想到可以先推导出任意方向线应变的计算公式,对其求导可得主应变的方向角,再将该方向角代回原任意方向线应变的计算公式就可得到主应变的大小。由以上分析可知对平面应力状态下任意方向线应变计算公式的推导是有现实的意义的。
2任意方向线应变计算公式的两种推导方法
2.1传统推导方法——叠加法
假设已知某微元体在xoy平面发生线应变?x , ?y ,及切应变γxy,那么距x轴为任意角α方向的线应变?α可以更具叠加原理求解,即分别将?x , ?y和γxy对?α的贡献求出,然后再叠加即可。
现在以求?x的贡献为例,叙述推导过程。如图1,只有?x 单独作用时,在x方向产生位移增量的 ?x dx,则OP线位移到OP′。若x方向的位移增量?x dx对α方向的线应变的贡献表示为 εα|x ,则
εα|x=
=
????′????
=
????′cos??
????cos??
图1
????????????
??????2?? =????cos2?? (1)
用同样的方法可推导出
εα|y=????cos2?? (2) εα|xy= ﹣??????sin??cos?? (3)
由(1)(2)(3)式叠加可得
?α=εα|x+εα|y+εα|xy
=????cos2??+????cos2??﹣??????sin??cos??
经三角变换得
?α=
????+????2
+
?????????2
cos2?? -
??????2
sin2?? (4)
此式即平面应力状态下任意方向线应变计算公式。
2.2利用广义胡克定律进行推导的方法
叠加法是大多数资料书中使用的方法,主要应用了几何知识进行推导,需要进行画图分析,有时感到较为繁琐。在对材料力学的学习过程中,笔者发现一种利用广义胡克定律进行推导的方法,可以避免繁琐的几何分析。其大体思路为:沿所求线应变方向建立一个新直角坐标,利用平面应力状态下任意斜截面上的应力计算公式计算出新坐标内的两个垂直方向的应力,最后用广义胡克定律计算出所求线应变的大小。具体的推导过程如下:
在平面应力状态下,根据广义胡克定律有
图2
????=(??x-ν??y) (5)
??
1
????=(??y-ν??x) (6) ??????=
??????????
1
(7)
式中E为材料的弹性模量,G为材料的切变模量,ν为材料的泊松比。
如图2所示,现需求距x轴为任意角α方向的线应变????,则建立一个新的坐标系x′oy′, 则有
1
????=????′=(??x′-ν??y′) (8)
??
现只需求??x′和??y′。
由平面应力状态下任意斜截面上的应力计算公式:
????+????
?????????
2
????= ????=
可得
2
?????????
2
+
cos2?? - ??xys????2??
sin2?? + ??xycos2?? +
?????????
2?????????
22
??x′=
????+????
2????+????
22
cos2?? - ??xys????2?? (9) cos2(??+90°﹚ - ??xys????2(??+90°) cos2?? + ??xys????2?? (10)
??y′= =
1
+
????+????
?
?????????
将(9)(10)式代入(7)式得
????=(??x′-ν??y′)
??
=[
??
1????+????
2
(1?ν) +
?????????
2
(1+ν)cos2?? ?
??xy(1+ν)s????2??] (11)
要得到平面应力状态下任意方向线应变计算公式,需将(11)式中的??x,??y和??xy替换掉,使其成为含????,????和??????的式子。 由(5)+(6)式有
1
????+????=(??x+??y)(1-ν) (12)
??1
由(5)-(6)式有
?????????=(??x???y)(1+ν) (13)
??
又因为G=
??
2(1+??)
,所以由(7)式有
??xy2??
??xy(1+ν)=?α=
????+????2
(14)
cos2?? -
??????2
将(12)(13)(14)式代入(11)式则可得
+
?????????2
sin2??
至此,本文便用另一种不同的方法推导出了平面应力状态下任意方向线应变计算公式。
3结论
叠加法从线应变的本质出发,利用几何知识进行分析推导,较为科学准确,被大多数资料所使用。然而,叠加法虽直观但其几何分析过程较为繁琐。利用广义胡克定律推导的方法,只需式子间的巧妙变换便可以达到推导目的,避免了繁琐的几何分析。
参考文献:
[1] 王守新.材料力学[M].第二版.大连:大连理工大学出版社,2004.
[2] 大连理工大学基础力学实验中心.基础力学实验讲义[M].大连:大连理工大学出版社,2010.