管理运筹学复习题及部分参考答案 下载本文

内容发布更新时间 : 2024/11/2 22:26:14星期一 下面是文章的全部内容请认真阅读。

管理运筹学复习题及部分参考答案

(由于该课程理论性强,采用开卷考试的形式)

一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策 二、简答题

1.简述运筹学的工作步骤。 2.运筹学中模型有哪些基本形式? 3.简述线性规划问题隐含的假设。 4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解? 6.简述对偶理论的基本内容。 7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。 9.简述运输问题的求解方法。 10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》 2.13

14. 有如下的直线方程:2x1+x2=4

a. 当x2=0时确定x1的值。当x1=0时确定x2的值。

b. 以x1为横轴x2为纵轴建立一个两维图。使用a的结果画出这条直线。 c. 确定直线的斜率。

d. 找出斜截式直线方程。然后使用这个形式确定直线的斜率和直线在纵轴上的截距。 答案:

14. a. 如果x2=0,则x1=2。如果x1=0,则x2=4。 c. 斜率= -2 d. x2=-2 x1+4

2.40

你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。模型的代数形式如下所示。 Maximize 成本=15 x1+20 x2 约束条件 约束1:x1+ 2x2?10 约束2:2x1?3x2?6 约束3:x1+x2?6 和 x1?0,x2?0

a. 用图解法求解这个模型。

b. 为这个问题建立一个电子表格模型。 c. 使用Excel Solver求解这个模型。

答案:

a. 最优解:(x1, x2)=(2, 4),C=110 b?c. 活 动 获 利 1 2 总 计 水 平 A 1 2 10 ? 10 B 2 ?3 ?8 ? 6 C 1 1 6 ? 6 单位成本 15 20 $110.00 方 案 2 4 3.2

考虑具有如下所示参数表的资源分配问题:

每一活动的单位资源使用量 可获得的 资源 资源数量 1 2 1 2 1 10 2 3 3 20 3 2 4 20 单位贡献 $20 $30

单位贡献=单位活动的利润

b. 将该问题在电子表格上建模。

c. 用电子表格检验下面的解(x1, x2)=(2, 2), (3, 3), (2, 4), (4, 2), (3, 4), (4, 3), 哪些是可行解,可行解中哪一个能使得目标函数的值最优? d. 用Solver来求解最优解。 e. 写出该模型的代数形式。

f. 用作图法求解该问题。

答案:

a?c. 每单位数量的活动使用的资源量 资 源 活动1 活动2 总 计 可用资源 1 2 1 10 ? 10 2 3 单位利润 方 案 3 3 2 4 20 20 3.333 3.333 20 ? 20 20 ? 20 $166.67 3.5 Omega公司停止了生产一些已经不再获利的产品,这样就产生了相当地剩余生产力。管理层考虑将这些剩余的生产力用于一种或几表所示。

机器的类型 每周可获得的机器小时 铣床 500 车床 350 磨床 150

各种产品每生产一个单位需要的机器小时如下表所示:

生产系数(每单位的机器小时)

机器类型 产品1 产品2 产品3 铣床 9 3 5 车床 5 4 0 磨床 3 0 2

销售部门表示产品1与产品2的预计销售将超过最大的生产量,而产品3的每周平均销售20单位。三种产品的单位利润分别为$50, $20, 和$25。目标是要确定每种产品的产量使得公司的利润最大化。

a. 判别问题的各种活动以及分配给这些活动的有限的资源,从而说明该问题为什么是资源分

配问题。

b. 为该资源分配问题建立参数表。

c. 描述该问题要作出的决策,决策的限制条件以及决策的总绩效测度。

d. 将上面对于决策与绩效测度的描述以数据和决策量的定量的方式来表达。

e. 为该问题建立电子表格模型,确定数据单元格,可变单元格,目标单元格以及其他的输出

单元格,并且将输出单元格中使用SUMPRODUCT函数的等式表示出。 f. 用Solver来求解问题。 g. 将该模型以代数形式总结。

答案:

c. 所需要进行的决策是每一种产品应当生产多少。决策的约束条件是碾磨机、车床和磨工的可用时数以及产品3的潜在销量。总的绩效测度是利润,利润必须最大化。 d. 碾磨机:9(#1的单位数)+3(#2的单位数)+5(#3的单位数)? 500 机床: 5(#1的单位数)+4(#2的单位数)? 350 磨工: 3(#1的单位数)+2(#3的单位数)? 150 销售量:(#3的单位数)? 20 非负条件:(#1的单位数)? 0,(#2的单位数)? 0,(#3的单位数)? 0 利润=$50(#1的单位数)+$20(#2的单位数)+$25(#3的单位数) e?f. A B C D E F G 1 资 源 每单位数量的活动使用的资源量 总 计 可用资源