新版物理化学第二章热力学第二定律练习题及答案课件 doc - 图文 下载本文

内容发布更新时间 : 2024/11/7 20:49:09星期一 下面是文章的全部内容请认真阅读。

T

S1

C p ln

T

T

2

(在恒容下 )

S2

V

ln

设 C 点温度为 T', 1

C

(在等压下 ),

S

S

C ln

T C

2

p

R

ln

T 1 2

p

T

T

1

C

T

2

R

ln

T 2 C

B

T p 2 2 ln

p

T

T 1 T p 1

C

T p 2

R

ln p 1

或:

T

2

ln

2

V

; 2 T p

T

p

1

1

2

nR

∴ ΔS3 = ΔS1 + ΔS2 5. 证明:

A

A

n

i

T

i

S

j

i

T ,V ,n

V ,n

ni

n

T T

V ,n

i

T ,V

,n

j i

T ,V ,n

j i

V , n

p

i

S

V

i

i

T

,

,

T

∵ d

i

Si dT

Vi dp ,∴

V n

V n

S p

i

S

V

i

i

ni

T

T

T ,V ,n

V n

j ,

, V n

i

6.解: (1) 等温过程: ΔU = ΔH = 0,

Q

W

nRT ln

p

1 1 3987 .5

p

8 .314 2

298 ln 5 S

Q R 3987

.5 -1 T

298 13 .38 J K

A G

3987 .5 ,

Q

W

2

V

RT

(2) ΔU = ΔH = 0,

p V

1

p

- 1

3987 .5 1

G

A

J S

nR ln

13 .38 J K

p

2

1

5 ,

2

T T p

1 298 5 5

(3) 3 2 1 p

2

156 .8 K

T

p V

1 1

nR

J; 3987 .5

J

W J

1

p

2 8.314 298 1 5 1982 J

p

1

U H

nC

V ,m

T T

p ,m

3

R R

156 .8

156 .8

298

2934

,W J

,Q 298 1761 J 0 U R

1761 J ln

- 1 5 112 .6 J K

nC

2

5 2 , S

1

S A G

0 U H

S

2

S 298 K R ln

p

1

126

p

2

S T 2 S T 2

T

298

1

1761 112 .6 14318 2934 112 .6 12965

156 .8 J 156 .8 J

T 298

(4)

Q

0,V

V

3

W , R T

2 2

2

T

p

1 2

1

1

U

3 2

R

2

T R 298 2

1 T 298 , T 202 .6 K 2 2 5

U

T H T

nC

V ,m

T

1

3 2

R 202 .6 298 1990 J W R 202 .6 298 1983 J p 1 5 .36 J K p

2

-1

-1

nC

p ,m

2

T

1

5 2

S nC

ln

p , m

T

2

nR ln

T

1

-1

S

1

112 .6 J K

S

2

S

1

S 112 .6 1190

8454 1983 7661

5. 36 118 118

118 J 202 .6 112 .6 202 .6 112 .6

K J J

A G

U H

S 2 S 2

T

2

S T

298

1 1

T

2

S T 298

1 1

7.解:

∵ p = 0, ∴ W = 0 ,设计如图,按 1,2 途经计算:

nRT ln

p

1

8 .314

1

373

ln

0.5

= 2149.5 J

Q1 = ΔH1 = 40670 J ,Q2 = - W2 =

p

2

W1 = - p(Vg- Vl) = - pVg = - RT = - 3101 J, W2 = - 2149.5 J

Q' = Q1 + Q2 = 40670 + 2149.5 = 42819.5 J ,W' = W1 + W2 = - 3101 - 2149.5 = - 5250.5 J ΔU = Q'- W' = 42819.5 - 5250.5 = 37569 J ΔH2 = 0,ΔH = ΔH1 = 40670 J ,向真空膨胀: W = 0,Q = ΔU = 37569 J

ΔS = ΔS1 + ΔS2 =

373 40670

R ln

1 0 .5

- 1

= 109.03 + 5.76 = 114.8 J K ·

ΔG = ΔH - TΔS= 40670 - 373 × 114.8 = - 2150.4 J ΔA = ΔU + TΔS= 37569 - 373 × 114.8 = - 5251.4 J

8.解: Pb + Cu(Ac) 2 → Pb(Ac)2 + Cu ,液相反应, p、T、V 均不变。 W' = - 91838.8J,Q = 213635.0 J,W(体积功 ) = 0,W = W' ΔU = Q + W= 213635 - 91838.8 = 121796.2 J

Q R

ΔH = ΔU + Δp(V) = UΔ= 121796.2 J ΔS= T

= 213635/298 = 716.9 J K · ΔA = ΔU - TΔS= - 91838.8 J,ΔG = - 91838.8 J

- 1

9. 解:确定初始和终了的状态

V

He nRT He

2 .2 8 .314 283 1. 013 10

5

3 0.04649 m

p

2

V H

nRT H 2

2

p

态:

终态:关键是求终态温度,绝热,刚性,

nHe C

He

V ,m

2

He

H 2

V ,m

2

293 8 .314 5

10 1 .013

.2 3 0. m 02406

ΔU = 0

T

T

H

2

T T n C

H

0

2

即: 2 × 1.5R × (T2- 283.2) = 1 × 2.5R × (293.2 - T2) , ∴ T2 = 287.7 K

V2 =

V He

3

V

= 0.04649 + 0.02406 = 0.07055 m

H

2