内容发布更新时间 : 2025/1/6 17:45:43星期一 下面是文章的全部内容请认真阅读。
范文 范例 指导 学习
2016年普通高等学校招生全国统一考试
理科数学
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目
要求的.
(1)设集合S=S??xP(x?2)(x?3)?0?,T??x?x?0? ,则SIT=
(A) [2,3] (B)(-? ,2]U [3,+?) (C) [3,+?) (D)(0,2]U [3,+?) (2)若z=1+2i,则
4i? zz?1(A)1 (B) -1 (C) i (D)-i
uuv12uuuv31) ,BC?(,), 则?ABC= (3)已知向量BA?(,2222(A)30 (B) 45 (C) 60 (D)120
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中
00
A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C。下面叙述不正确的是
0
(A) 各月的平均最低气温都在0C以上
(B) 七月的平均温差比一月的平均温差大
(C) 三月和十一月的平均最高气温基本相同
0
(D) 平均气温高于20C的月份有5个
(5)若tan??0
0
0
0
3 ,则cos2??2sin2?? 4644816(A) (B) (C) 1 (D)
252525433413(6)已知a?2,b?4,c?25,则
(A)b?a?c (B)a?b?c(C)b?c?a(D)c?a?b (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3 (B)4 (C)5 (D)6
word版本整理分享
范文 范例 指导 学习
(8)在△ABC中,B=(A)π1,BC边上的高等于BC,则cosA= 4331010 (B) 101010310 (D)- 1010 (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为
(C)-(A)18?365 (B)54?185 (C)90 (D)81
(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB?BC,AB=6,BC=8,AA1=3,则V的最大值是 (A)4π (B)(D)
9? 2 (C)6π
32? 3x2y2(11)已知O为坐标原点,F是椭圆C:2?2?1(a?b?0)的左焦点,A,B分别为C的左,右顶点.P为Cab上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的
离心率为 (A)
13
(B)
12
(C)
23
(D)
3 4,ak(12)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k?2m,a1,a2,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有 (A)18个 (B)16个 (C)14个 (D)12个
二、填空题:本大题共3小题,每小题5分
(13)若x,y满足约束条件错误!未找到引用源。 则z=x+y的最大值为_____________.
(14)函数错误!未找到引用源。的图像可由函数错误!未找到引用源。的图像至少向右平移_____________个单位长度得到。
(15)已知f(x)为偶函数,当错误!未找到引用源。时,错误!未找到引用源。,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。
(16)已知直线错误!未找到引用源。与圆错误!未找到引用源。交于A,B两点,过A,B分别做l的垂线与
word版本整理分享
范文 范例 指导 学习
x轴交于C,D两点,若错误!未找到引用源。,则错误!未找到引用源。__________________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)
已知数列错误!未找到引用源。的前n项和错误!未找到引用源。,错误!未找到引用源。,其中?错误!未找到引用源。0
(I)证明错误!未找到引用源。是等比数列,并求其通项公式 (II)若S5?31 错误!未找到引用源。 ,求? 32
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明 (II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
(20)(本小题满分12分) 已知抛物线C:y2?2x 的焦点为F,平行于x轴的两条直线
l1,l2分别交C于A,
B两点,交C的准线于P,Q两点.
(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记错误!未找到引用源。的最大值为A. (Ⅰ)求f'(x); (Ⅱ)求A;
(Ⅲ)证明错误!未找到引用源。≤2A.
word版本整理分享