内容发布更新时间 : 2025/2/1 15:38:39星期一 下面是文章的全部内容请认真阅读。
淮北一中2012-2013高二期中考试数学试题卷(包含答案)
∵ g(x)??(x?2)?∴ g(x)max2···················································· 10分 在[2,4]上递减 ·
x?1················································································ 11分 ?g(2)?2 ·
∴ p > 2 ····································································································· 12分
20. 解: (I)如图,AB=402,AC=1013,?BAC??,sin??26. 26由于0???90,所以cos?=1?(262526)?. 2626AB2?AC2?2ABACcos??105.
105?155(海里/小时). 所以船的行驶速度为23由余弦定理得BC=(II)解法一 如图所示,以A为原点建立平面直角坐标系,
设点B、C的坐标分别是B(x1,y2), C(x1,y2), BC与x轴的交点为D.
2AB=40, 2x2=ACcos?CAD?1013cos(45??)?30,
由题设有,x1=y1=
?1013sin(45??)?20.
20所以过点B、C的直线l的斜率k=?2,直线l的方程为y=2x-40.
10|0?55?40|?35?7. 又点E(0,-55)到直线l的距离d=1?4y2=ACsin?CAD所以船会进入警戒水域.
解法二: 如图所示,设直线AE与BC的延长线相交于点Q.
在△ABC中,由余弦定理得,
AB2?BC2?AC2402?2?102?5?102?13310cos?ABC?==102AB?BC2?402?105从而sin?ABC.
?1?cos2?ABC?1?910?. 101010ABsin?ABC10?40. ?在?ABQ中,由正弦定理得,AQ=
sin(45??ABC)2210?210402?由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.
?BC于点P,则EP为点E到直线BC的距离.
在Rt?QPE中,PE=QE·sin?PQE?QE?sin?AQC?QE?sin(45??ABC)
过点E作EP
=15?所以船会进入警戒水域. 21.(1)解:
5?35?7. 5an?1?2an?1(n?N*),
?an?1?1?2(an?1),
??an?1?是以a1?1?2为首项,2为公比的等比数列。
6 / 7
淮北一中2012-2013高二期中考试数学试题卷(包含答案)
?an?1?2n.
即
an?2n?1(n?N?)
(2)证明:
4b1?14b2?1...4bn?1?(an?1)bn,
①
②
?4(b1?b2?...?bn)?2nbn,
?2[(b1?b2?...?bn)?n]?nbn,
②-①,得2(bn?1?1)即(n?1)bn?1?nbn
④-③,得nbn?2即bn?22[(b1?b2?...?bn?bn?1)?(n?1)]?(n?1)bn?1.
?(n?1)bn?1?nbn,
③ ④
?2?0.
nbn?2?(n?1)bn?1?2?0.
?2bn?1?bn?0,
?2nbn?1?nbn?0,
?bn?2?bn?1?bn?1?bn(n?N*),
??bn?是等差数列。
ak2k?12k?11?k?1??,k?1,2,...,n, (理)(3)证明:
ak?12?12(2k?1)22aaan?1?2?...?n?.
a2a3an?12
ak2k?11111111?k?1??????.k,k?1,2,...,n, k?1kkak?12?122(2?1)23.2?2?2232aaan1111n11n1?1?2?...?n??(?2?...?n)??(1?n)??, a2a3an?12322223223an1aan???1?2?...?n?(n?N*). 23a2a3an?12
7 / 7