数学与应用数学专业毕业论文-向量在立体几何中的应用 下载本文

内容发布更新时间 : 2025/1/7 14:10:28星期一 下面是文章的全部内容请认真阅读。

向量在立体几何中的应用

摘 要

线作为现代数学的重要标志之一的向量已进入了中学数学教学, 为用代数方法研究几何问题提供了强有力的工具,促进了高中几何的代数化 . 而在高中数学体 系中,几何占有很重要的地位,有些几何问题用常规方法去解决往往比较复杂,运用向量作行与数的转化,则使过程得到大大的简化 . 向量法应用于平面几何中

时,它能将平面几何许多问题代数化、 程序化从而得到有效的解决, 体现了数学中数与形的完美结合 . 立体几何常常涉及到的两大问题:证明与计算,用空间向量解决立体几何中的这些问题, 其独到之处, 在于用向量来处理空间问题, 淡化了传统方

法的有“形”到“形”的推理过程,使解题变得程序化 . 关键词:向量;立体几何;证明;计算;运用

ABSTRACT

As one of the important signs of modern mathematics the vector has entered

middle school mathematics teaching, using algebraic method research geometry problems provides powerful tools, promoted the high school of the geometry of algebra. And in the high school mathematics system, geometric occupies a very important position, some geometry problems with conventional method to solve tend to be complex, using vector for the number of rows and transformation, makes the process is greatly simplified. Vector method was used the plane geometry, it will be when the plane geometry many problems algebra effectively, programmed to solve, reflected in mathematics, the perfect combination of Numbers and forms. Three-dimensional geometry often involved the two big problems: proof and calculation, with space vector solve three-dimensional geometry in these problems, its unique, is using vector to deal with the problem of space, fade the traditional methods are \\

Keywords: Vector; solid geometry; proof; calculation; use

合肥师范学院2011 届本科生毕业论文(设计)

目 录

摘 要 . ...........................................

ABSTRACT............................................

1 向量方法在研究几何问题中的作用 ..................... 2 向量方法解决证明问题的直接应用 .....................

2.1 平行问题 ......................................

2.1.1 证明两直线平行 ...........................

2.1.2 证明线面平行 .............................

2.2 垂直问题 ......................................

2.2.1 证明两直线垂直 ...........................

2.2.2 证明线面垂直 .............................

2.2.3 证明面面垂直 .............................

2.3 处理角的问题 ..................................

2.3.1 求异面直线所成的角 . .......................

2.3.2 求线面角 .................................

2.3.3 求二面角 .................................

3 向量方法解决度量问题的直接应用 .................... 3.1 两点间的距离 .................................. 3.2 点与直线距离 .................................. 3.3 点到面的距离 .................................. 3.4 求两异面直线的距离 ............................ 3.5 求面积 ........................................

Ⅰ Ⅰ 1 2 2 2 3 4 4 4 5 6 6 7 8 10 10 10 11 11 12