内容发布更新时间 : 2024/11/17 14:31:23星期一 下面是文章的全部内容请认真阅读。
案例一 时间序列数据平稳性检验实验指导
一、实验目的:
理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。
二、基本概念:
如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。
时序图 ADF检验 PP检验
三、实验内容及要求: 1、实验内容:
用Eviews5.1来分析1964年到1999年中国纱产量的时间序列,主要内容: (1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙; (2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性; (3)、进行纯随机性检验; (4)、平稳性的ADF检验; (5)、平稳性的pp检验。 2、实验要求:
(1)理解不平稳的含义和影响;
(2)熟悉对序列平稳化处理的各种方法;
(2)对相应过程会熟练软件操作,对软件分析结果进行分析。
四、实验指导 (1)、绘制时间序列图
时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。
在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Date specification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。
图1-1 建立工作文件
图1-2
创建新序列SHA,如图1-2。点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。如果选择折线图,出现图1-4的对话框,在此对话框中键入要做图的序列,点击OK则出现折线图,横轴表示时间,纵轴表示纱产量,见图1-5,选择图1-5上工具栏options可以对折线图做相应修饰。点击主菜单的Edit/Copy,然后粘贴到文档就变成了如图1-6的折线图。
图1-3
图1-4
图1-5
600500400300200100019651970197519801985SHA19901995 图1-6
从图1-6可以看出,纱产量呈现波动中上升的趋势,显然不平稳,所以不是一个平稳序列。这一结论,还可以通过平稳性统计检验来进一步说明。 (2)、通过相关图做平稳性判断
为了进一步的判断序列SHA的平稳性,需要绘制出该序列的自相关图。双击序列名sha出现序列观测值的电子表格工作文件,点击View/Correlogram,出现图1-7的相关图设定对话框,上面选项要求选择对谁计算自相关系数:原始序列(Level)、一阶差分(1st difference)和二阶差分(2nd difference),默认是对原始序列显示相关图。下面指定相关图显示的最大滞后阶数k,若观测值较多,k可取?T/10?或?T?;若样本量较小k一般取?T/4?(T表
??示时间序列观测值个数,?。若序列是季节数据,一般k取季?表明不超过其的最大整数)
节周期的整数倍。设定完毕点击OK就出现图1-8的序列相关图和相应的统计量。