内容发布更新时间 : 2025/1/7 4:59:48星期一 下面是文章的全部内容请认真阅读。
(奥数)鸡兔同笼问题(一)
五种基本公式和例题讲解
(一)已知总头数和总脚数,求鸡、兔各多少(假设法):
假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。
或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数) (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。 解二 (4×36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)…………………………兔。答:略
(二)已知总头数和鸡 、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 ※仍属 假“鸡”得“兔”类型
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数
※仍属假“兔”得“鸡”类型
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(
例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?
(1)假设全是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡) ※↓因为鸡脚比兔脚多58,所以应减去58
(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔) ※↓因兔脚比鸡脚少58,所以应加上58
1
(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 ※仍属 假“鸡”得“兔”类型
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。
※仍属假“兔”得“鸡”类型
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。
例如:鸡和兔总共107只,兔比鸡多56只脚,鸡和兔各几只? (2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡) ※↓因为鸡脚比兔脚少56,所以应加上56在此处键入公式。 或(4 ) 62(只鸡);107-62=45(只兔) ※↓因为兔脚比鸡脚多56,所以应减去56
说明:每增加(或减少)一只鸡(或兔),它们脚数的差就是(2+4)
(四)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡、兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡、兔脚数之和)-(两次总脚数之差)÷(每只鸡、兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
分析:由题意知,鸡比兔多
解 法一:(1)〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =(16+4) 2
=20÷2=10(只鸡)
(2)〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =(16-4)
=12÷2=6(只兔) (答略)
2
或:解:(52-44) 4(只兔)→鸡比兔多4只
法二: 设鸡有x只,则兔有(x-4)只。 法三:解:设兔有x只,则鸡有(x+4)只。
(x-4) 4+2x=44 (x+4) 2+4x=44
4x-16+2x=44 2x+8+4x=44
6x=60 6x=36 X=10 x=6
10-4=6(只兔) 6+4=10(只鸡)
答:略 答:略 (五)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数;
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15) =475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15) =1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
3