新北师大版九年级数学下册《三章 圆 2 圆的对称性》教案_21 下载本文

内容发布更新时间 : 2024/12/27 13:17:46星期一 下面是文章的全部内容请认真阅读。

3.2圆的对称性

一、教学目标:

知识与技能

通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理.

通过动手操作、观察、归纳,经历探索新知的过程,培养学生实验、观察、发现新问题,探究和解决问题的能力.

情感态度与价值观

(1)通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣. (2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.

(3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

二、教学重难点:

教学重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题. 教学难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的

理解及定理的证明.

三、教学准备:课件 四、教学过程

数学活动一:认识圆的对称性

提问一:我们已经学习过圆,你能说出圆的那些特征? 提问二:圆是对称图形吗?

(1)圆是轴对称图形吗?你怎么验证

圆是轴对称图形,对称轴有无数条(所有经过圆心的直线都是对称轴) 验证方法:折叠

(2)圆是中心对称图形吗?你怎么验证?

同学们请观察老师手中的两个圆有什么特点?

现在老师把这两个圆叠在一起,使它俩重合,将圆心固定. 将上面这个圆旋转任意一个角度,两个圆还重合吗?

通过旋转的方法我们知道:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形.对称中心为圆心.

OO'O(O')数学活动二:了解圆心角的定义

如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.

BAO

数学活动三、探索圆心角定理

尝试与交流.按下面的步骤做一做:

1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下.

2.在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′ (如下图示),圆心固定.注意:∠AOB和∠A′O′B′时,要使OB相对于0A的方向与O′B′相对于O′A′的方向一致,否则当OA与O′A′重合时,OB与O′B′不能重合.

3.将其中的一个圆旋转一个角度,使得OA与O′A′重合. 教师叙述步骤,同学们一起动手操作.

OBAO'B'A'通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.

结论可能有:

1.由已知条件可知∠AOB=∠A′O′B′.

2.由两圆的半径相等,可以得到∠OBA=∠O′B′A′=∠OAB和∠O′A′B′. 3.由△AOB≌△A′O′B′可得到AB=A′B′.

AB=?A'B' 4.由旋转法可知?AB=?A'B'理由是一种新的证明弧相等的方法——叠合法.我们在刚才到的?上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和A′B′重合,弦AB与弦A′B′重合,即AB=A′B′.

在上述操作过程中,你会得出什么结论?

在等圆中,相等的圆心角所对的弧相等,所对的弦相等. 上面的结论,在同圆中也成立.于是得到下面的定理:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.

注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.

(通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.

AB≠?A'B', 如下图示.虽然∠AOB=∠A′O′B′,但AB≠A′B′?BB'AA'O下面我们共同想一想.

在同圆或等圆中 弧相等 相等的圆心角 弦相等

如果在同圆或等圆这个前提下,将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.