最新版人教版五年级数学下册教学设计(全册教案含计划) 下载本文

内容发布更新时间 : 2025/1/22 23:43:57星期一 下面是文章的全部内容请认真阅读。

正方体的体积=棱长×棱长×棱长V=a3 长方体或正方体的体积=底面积×高V=Sh

课后反思:

第九课时

教学目标:

1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。

2.使学生学会用名数的改写解决一些简单的实际问题。 3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。 教学重点:掌握名数的改写方法。

教学难点:用名数的改写解决一些简单的实际问题。 教学过程: 一、【复习导入】

1.口答:说一说常用的体积单位有哪些? 2.填一填。 1千米=( )米

1米=( )分米=( )厘米 1平方米=( )平方分米 1平方分米=( )平方厘米 二、【新课讲授】

1.学习体积单位间的进率。

(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。 想一想,它的体积是多少立方厘米。 (2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm) (4)计算。

请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米?

学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

41

老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3

(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。 老师板书:1立方米=1000立方分米 (7)观察板书内容。

想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。 2.体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。

(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

(3)体积单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3.学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率) (2)学习教材第35页的例3。

板书:3.8m3是多少立方分米?2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。

板书:3.8m3=(3800)dm32400cm3=(2.4)dm3 (3)学习教材第35页的例4。

学生理解题意明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少?

学生独立思考,然后解答,指名板演。

V=abh=50×30×40=60000(cm3)=60(dm3)=0.06(m3)

4.巩固:完成课本第35页的“做一做”第1题。学生完成后,要求他们口述解答的过程。

3.5dm3=(3500)cm3700dm3=(0.7)m3 三、【课堂作业】

完成课本第36~37页练习八的第1~9题。

1.第1题此题是巩固单位间进率的习题。练习时先让学生独立完成,反馈时,让学生说说思考的过程。

42

2.第2题这是一道实际应用的问题。包装盒是否能够装得下玻璃器皿,关键要看包装盒的高是多少,因为从已知条件中我们已经知道包装盒的长、宽都比玻璃器皿的长、宽要长。只要包装盒的高大于18cm,就能够装得下。练习时,让学生独立计算出包装盒的高,提醒学生注意统一计量单位后,全班反馈。 3.第3~9题由学生独立完成。 四、【课堂小结】

今天我们学习了体积单位间的进率,在这节课里,你有哪些收获呢? 五、【课后作业】

完成练习册中本课时练习。 板书设计:

体积单位间的进率 1立方分米=1000立方厘米 1立方米=1000立方分米

课后反思:

第十课时

教学目标:

1.使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。 2.掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。 3.感受1毫升的实际意义,和应用所学知识解决生活中的简单问题。 教学重点:容积单位换算 教学难点:容积单位换算 教学过程: 一、【复习导入】 1.什么叫物体的体积?

2.常用的体积单位有________、_________、_________,相邻两个体积单位之间的进率是_________。

3.一个长方体的纸盒,长2dm、宽1.8dm、高1dm,它的体积是多少立方分米? 学生在练习本上完成,然后小组交流检查。 二、【新课讲授】 1.教学容积的概念。

(1)教师把长方体的纸盒打开,问:盒内是空的可以装什么?学生交流后汇报。 教师:我们把这个纸盒所能容纳物体的体积叫做它的容积。 如:金鱼缸里面可以放满水,水的体积就是鱼缸的容积。 (2)学生举例说一说什么是容积?

43

教师引出课题并板书:容积

(3)比较物体的体积和容积的异同。

请学生想一想,体积和容积有什么相同点,有什么不同点。学生独立思考,小组内交流,全班反馈。

相同点:体积和容积都是物体的体积,计算方法一样。

不同点:①体积要从容器外面量出它的长、宽、高;而容积要从容器的里面量长、宽、高。

②所有的物体都有体积,但只有里面是空的,能够装东西的物体,才能计算它的容积。

(4)容积的计算方法。

教师:容积的计算方法与体积的计算方法相同,但要从里面量出长、宽、高。这是为什么呢?

教师出示一个木盒。演示为什么容积应该从里面量出长、宽、高。 2.教学容积单位。

(1)教师:计量物体的容积,需要用到容积的单位。(完成课题板书) (2)学生自学教材第38页内容。组织学生汇报学习的内容,教师板书:升、毫升

(3)出示量杯和量筒,倒入1升的水进行演示,让学生得出 1升=1000毫升(1L=1000mL) (4)容积单位与体积单位的关系。

试验:把水倒入量杯1mL处,然后再把1mL的水倒入1cm3的正方体容器里面,刚好倒满

提问:这个实验说明什么?1mL=1cm3。(板书)

提问:大家想一想1升是多少立方分米?相互讨论,得出:1L=1dm3。(板书) 3.新知应用。出示例5,指一名学生读题。(1)分析理解题意:求这个油箱可以装多少汽油就是求这个油箱的什么?必须知道什么条件?应该怎样算? (2)学生独立完成,然后指名汇报,全班集体订正。 5×4×2=40(dm3)40dm3=40L 答:这个油箱可装汽油40L。 三、【课堂作业】

完成教材第40~41页练习九的第1~6题。 答案:1:mL L m3 3:18÷1.5=12(瓶) 4:400×225×300 =27000000(mm3) =27(dm3)

44

mL

8.04

8040

785

0.785

2:4000 4.8 82 0.5 35000 2400