内容发布更新时间 : 2025/1/14 3:06:47星期一 下面是文章的全部内容请认真阅读。
科学出版社第五章电路理论习题答案
5.2 简答题:
(1)一阶有损RL电路的完全响应为
iL?t??4?91?e?3t ?A? ?t?0?,试求
①iL?0??;②自由响应和强迫响应;③零输入响应与零状态响应。 解:由iL?t??4?91?e?3t A ?t?0?有 iL?0???4?91?e3?0?4 A iL????4?9?13 A
由三要素法有:自由响应:iLh?t???9e?3t ?A? t?0 强迫响应:iLP?t??4?9?13 ?A?
零输入响应:iLZP?t??iL?0??e?3t
?4e?3t ?A? t?0 零状态响应:iLZS?t??iL???1?e?3t t?0 ?131?e?3t ?A? t?0
(2)已知电路如图5-34所示,t<0时,电路处于稳态;t=0时,开关由a打向b,试求:
??????????iL?0??,UC?0??。
解:先求0-时刻的iL?0??和UC?0??,此时电容开路,电感短路
iL?0???16A?2?3.2 ?A? 2?8UC?0???iL?0???R2?3.2?8?25.6?V?
K由a?b(打到),满足换路。UC?0???UC?0???25.6?V? iL?0???iL?0???3.2?A? 5.3 (1)0-时刻:电路稳定,电容两端开路:
UC?0???US2R240?300??30V
R1?R2100?300(2)0+时刻,UC?0???UC?0???30V
(3)t??(开关打在b)有:电容两端开路
UC????US1R280?300??60?V?
R1?R2100?300(4)求?
Req?R1//R2?100?//300??75? ??RC?0.4?10?3?75?0.003?S?
(5)由三要素法有:
UC?t??UC2P?t??UC2S?t??30e?100t31000t??3?60?1?e???? t?0 ??
?Uch?t??UcP?t???30?60?e?60?30e100t0?3?100t03?60 t?0
5.5 解:5<0时,Ui?t??0此时电路已处于稳态(二极管导通) I1?0???5V?0.7?5mA
1K? UC?0???0.7V t?0时,Ui?t??5V二极管截止: 当稳态时:UC????UCC5?10K?R2??4.54V
R1?R21K??10K?去掉电容的等效内阻:Req?R1//R2?1K?//10K??0.91K?
S1 ??Req?C?0.91K??0.01?F?0.009
由三要素法:UC?t???UC?0???UC????e?tc?UC?????0.7?4.54?e?t0.0091?4.54V
?当UC?t1??3V时?3??3.84e?t10.0091?4.54?t1?0.014S
???5.7 解:由已知iL?t??1?3e?t?2cos?t?? ?A? t>0
4??可知:1由激励电压源U?t?产生。
???2cos?t??由电压源US?t??2cosU?t?产生
?4????iL?0???1?3e?0?2cos?0???1?3?1??1
4?????1
1)US?t??0时,U?t?存在:iL????1,由U?t?产生
?iL?t???iL?0???iL????e?t?iL??? ???1?1?e?t?1?1?2e?t?A? t ? 0 2)当电源均为0时,为零输入响应 iL?t??iL?0??e?t??e?t ?A?
5.13 解:先做图5-46的去耦等效电路(t>0后)
列KVL方程有:
P?????z?1.5Pit?i2?t??12U?t?1?2??i1?t???PP2?5P?4?i1?t???2?1P?i2?t??0?12P?U?t??24U?t??2?P2?5P?4?di1?t?di1?t??5?4i1?t??12??t??24U?t? ① 2dtdtP????12Ut??2??02?P????2?P?12U?t?
P2?5P?4特征方程:?2?5??4?0??1??1, ?2??4
?A? ?通解:i1h?t??k1e?t?k2e?4t d2i1?t?di1?t??5?4i1?t??24 ② 求特解:
dtdt2?特解响应为t>0以后,i1p?t??B
?A? 代入上式 i1p?t??24 ?i1?t??i1n?t??i1p?t??k1e?t?k2e?4t?24 ③ 求初始值i1?0??和i1?1??0?? 对①两边从0-到0+积分二次有:
i1?0???i1?0???0?0?0?i1?0???i1?0???0 对①两边积分一次(从0-到0+)
i1?0???i1?0???5?i1?0???i1?0????4?0?12?????d??12
?1??1?0?0??i1?1??0???i1?1??0???12?i1?1??0???12 A 由③式?i1?0???k1e?0?k2e?4?0?k1?k2?0 ④
由③求导:?k1e?t?4k2e?4t?i1?1??t??i1?1??0????k1?4k2?12A ⑤
由④和⑤???k1?4?i1?t??4e?t?4e?4t?k?24 2?4?A? ?t?0? 科学出版社 电路理论 第五章习题
5.17 解:求整个系统的h?t?
h?t???hd?t??h1?t??h2?t????t???h4?t? ????t?1????t?1????t?2????t????u?t??u?t?3??
????t?2????t?2????t????u?t??u?t?3?? ?2u?t?2??u?t??2u?t?5??u?t?3?
?y?t??h?t??f?t???u?t??2u?t?2??u?t?3??2u?t?5????u?t??u?t?3??
?tu?t??2?t?2?u?t?2???t?3?u?t?3??2?t?5?u?t?5? ???t?3?u?t?3??2?t?5?u?t?5???t?6?u?t?6??2u?t?8?u?t?8???tu?t??2?t?2?u?t?2??2?t?3?u?t?3??4?t?5?u?t?5? ???t?6?u?t?6??2?t?8?u?t?8??
5.20 解:设在相同初始状态下零输入响应为y2p?t?设冲击响应为h?t? 则:y1?t??2e?3t?sin2tu?t??y2p?t??h?t??f?t? ①
??y2?t??e?3t?2sin2tu?t??y2p?t??h?t???2f?t?? ②
?3t??y2p?t??3eu?t?由①和②??
?3t??h?t??f?t??sin2t?eu?t??y2S?t?????1)初始状态增大一倍,输入为4f?t?时的系统响应。 y?t??2y2p?t??h?t???4f?t??
?2?3e?3tu?t??4si2nt?e?3tu?t? ?4si2nt?2e?3tu?t?????2)初始状态不变,输入为f?t?t0?时
2?t?t0??e3?t?t0?u?t?t0? y?t??y2p?t??y2S?t?t0??3e?3tu?t??sin??3)输入为
df?t?时
dtdy2S?t?dsin2t?e?3tu?t???2cos2t?3e?3tu?t?????t? yiS?t??dtdt????