实验四 植物RNA的提取及其电泳鉴定2 下载本文

内容发布更新时间 : 2024/6/18 0:53:29星期一 下面是文章的全部内容请认真阅读。

实验四 植物RNA的提取及其电泳鉴定

一、原理植物细胞内含有细胞质RNA、细胞核RNA和细胞器RNA。细胞质RNA包括mRNA、rRNA、tRNA。细胞核RNA主要有细胞质RNA的前体及小分子细胞核RNA(snRNA)、染色质RNA(chRNA)等。细胞器RNA主要指线粒体RNA及叶绿体RNA。这些RNA统称细胞总RNA,其中大量的是rRNA,占80%左右。基因转录产物mRNA在总RNA中只占1%~5%。不同的mRNA在分子大小、核苷酸序列,以及在细胞内转录水平等方面各不相同,但真核细胞mRNA 3ˊ末端都具有20~200个不等的多聚腺苷酸的尾,称为poly(A)结构。利用poly(A)结构可以把mRNA从总RNA中分离出来。对于Northern杂交可以使用植物细胞总RNA,也可以使用由总RNA中分离出的mRNA。

植物细胞RNA提取中的主要问题是防止RNA酶的降解作用。RNA酶是一类水解核糖核酸的内切酶,它与一般作用于核酸的酶类有着显著的不同,不仅生物活性十分稳定,耐热、耐酸、耐碱,作用时不需要任何辅助因子,而且它的存在非常广泛,除细胞内含有丰富的RNA酶外,在实验环境中,如各种器皿、试剂、人的皮肤、汗液、甚至灰尘中都有RNA酶的存在。因而,生物体内源、外源RNA酶的降解作用是导致RNA提取失败的致命因素。

内源RNA酶来源于材料的组织细胞,提取自始至终都应对RNase活性进行有效抑制。RNA提取过程中将蛋白质变性剂与RNase抑制剂联合使用效果较理想。蛋白质变性剂包括酚、氯仿、SDS、Sarkosyl(十二烷酰肌氨酸钠)、DOC(脱氧胆酸钠)、盐酸胍、异硫氰酸胍、4—氨基水杨酸钠、三异丙基萘磺酸钠等;RNA酶抑制剂有RNasin(RNase阻抑蛋白)、氧钒核糖核苷复合物等。

外源RNA酶的抑制主要是使用DEPC(焦碳酸二乙酯C2Hs-O-CO-O-CO-O-CxH5),它能与RNase分子中的必需基团组氨酸残基上的咪唑环结合而抑制酶活性,用于水、试剂及器皿的RNase灭活。DEPC与肝素合用效果增强,值得注意的是DEPC在Tris溶液中很不稳定,很快分解成CO2 及C2H5OH,因而不能用于Tirs溶液的RNase灭活。水及其它溶液的灭活一般使用0.05%~0.1%DEPC,37℃处理过夜,也有人采用磁搅0.5小时以上的做法。DEPC处理后的溶液还需高压灭菌,以去除残存的DEPC。若DEPC去除不净,会破坏mRNA活性。不能高压灭菌的试剂要使用经过DEPC处理的灭菌蒸馏水配制,然后用0.22μm 滤膜过滤。含有Tris的试剂用经DEPC处理过的水配制,再经高压消毒。玻璃器皿可以在180℃烘烤8小时以上,不能烘烤的器皿用0.1%的DEPC水处理过夜后再高压灭菌。

提取全过程必须在清洁无尘的环境中进行。操作人员要使用一次性的手套拿取物品,尽可能避免一切污染机会。提取时使用的器皿应经过硅烷化处理,以防止RNA被吸附在器皿壁上,造成损失。RNA电泳使用的电泳槽需用去污剂洗涤,水冲洗,乙醇干燥。再浸入3% H202溶液中,室温下放置10分钟以上,再用DEPC溶液处理过的水冲洗干净。总之,实验中所用的试剂、器皿都要经过RNase灭活处理。

尽管如此,有时还会出现在提取的后期RNA被降解的问题。这是因为RNase活性的抑制只是一个暂时的现象,一旦抑制剂浓度下降RNase就有可能恢复活性。对于RNA提取来说,这是一个潜伏的危险。在提取的前阶段,提取液中无疑是有足够的抑制剂,但到了提取后期,抑制成分逐渐减少,残存的RNase就会复活而引起RNA降解。另外,提取后期发生的RNase污染,那怕是极轻微的,也会使到手的产品降解,因而提取后期要更加小心。

影响植物RNA提取的另一个问题是水溶性的细胞代谢物如酚、多糖等易与RNA结合成胶冻状的不溶物或有色的复合物,它们能影响RNA的质量及产量。人们采用了多种处理方法来解决这个问题,如对组织提取液进行高速离心去除多糖;采用低pH值的提取缓冲液抑制酚的解离及氧化;或用β—巯基乙醇、PVP来抑制酚类的干扰等。

(一)总RNA的提取

用于研究基因表达的总RNA提取时首先要考虑的问题是材料的选取及预处理。由于基因表达与生理状态密切相关,因而取材时必须考虑材料的生理状态,必要时还要对材料进行预处理,即施加某种因素,诱导目的基因表达,如进行光照、暗处理、或加入诱导物等。

材料的破碎与植物细胞总DNA的提取相同,采用液氮冷冻及在液氮中研磨。预处理过的材料要尽早地投入到液氮中,投入前要尽可能保持材料完整及新鲜,不要让材料压碎及破损。因为植物材料在破损时会引起多酚类物质的积累及氧化,使组织变褐而影响RNA分离。细胞膜裂解也与DNA提取相同,主要使用SDS或Sakosyl、酚等。

由于细胞内RNA主要以核蛋白体形式存在,所以总RNA提取的路线是细胞破碎,使核蛋白体从细胞内释放;采用使蛋白质变性的做法,令核蛋白体解析,RNA迅速与蛋白质分离,大量地释放到溶液中;然后用酚、氯仿有机溶剂抽提,去除蛋白质杂质,使核酸进入水相;再选择性沉淀RNA,使之与DNA分离;所得RNA再进行必要的纯化,最后用乙醇或异丙醇沉淀RNA。

至于植物细胞总RNA的提取方法,同植物总DNA提取一样,没有一种固定的通用方法。文献中报导的植物细胞总RNA的提取方法很多,但综合起来看,分离的主要依据不外乎如下几点:① 用酚及去污剂SDS或Sakosyl破碎细胞膜并去除蛋白质;② 酚、氯仿反复抽提纯化核酸;③ LiCl选择性沉淀去除DNA及其它不纯物;④ 3mol/L乙酸钠(pH6)沉淀RNA,DNA在上清液中;⑤ CsCl密度梯度离心,去除多糖等杂质,纯化RNA。

目前用于Northern 杂交植物总RNA提取方法根据主要试剂可分为苯酚法、异硫氰酸胍(或CTAB)法及氯化锂沉淀法:

1、苯酚法:该法利用苯酚协助破碎细胞;酚/氯仿变性蛋白质并反复抽提核酸;3mol/L乙酸钠选择沉淀RNA;提取液中使用4—氨基水杨酸及三异丙基萘磺酸盐抑制RNase活性。该方法操作简单、经济,可用于从植物叶、茎、根及萌发幼苗中提取总RNA或核RNA。

2、异硫氰酸胍法:异硫氰酸根及胍离子都是很强的蛋白质变性剂。异硫氰酸胍与十二烷基肌氨酸钠合用可使核蛋白体迅速解体;与还原剂β—巯基乙醇合用能强烈抑制RNase 活力,因而是制备RNA的一种常用试剂。

传统的异硫氰酸胍法需利用CsCl离心分离RNA(沉到管底)。这种做法操作时间长、设备要求高。经改进,目前使用的方法使操作大大地简化,并可同时提取多个样品。做法是将异硫氰酸胍、β—巯基乙醇、十二烷基肌氨酸钠三者合用,强有力抑制了RNA降解,增加了核蛋白体的解离,将大量的RNA释放到溶液中,然后用酸性酚进行抽提,既可保证RNA稳定,又可抑制DNA解离,使DNA与蛋白质一起沉淀,RNA被抽提进入水相,用异丙醇沉淀RNA后,经酚/氯仿再次抽提进行纯化。该方法提取的RNA 用于Northern 杂交可以得到满意结果。

3、氯化锂沉淀法:该方法的主要原理是在一定的pH条件下,Li+使RNA发生特异性沉淀,通过多级沉淀可提高RNA的纯净度。利用氯化锂选择性沉淀时,因提取缓冲体系不同有多种不尽相同的氯化锂法,有的使用硼酸缓冲液,加入还原剂二硫苏糖醇抑制RNase活性,用SDS变性核蛋白;有的使用Tris—HCl缓冲体系,用苯酚及蛋白酶K处理蛋白;还有的使用高浓度尿素变性蛋白质同时抑制RNase。氯化锂沉淀法虽也有效,但沉淀过程较为繁琐,并存在着Li+的污染问题。

(二)mRNA的分离

从总RNA中分离mRNA主要是利用亲和层析的原理。植物mRNA的3ˊ—端具有poly(A)结构,可用oligo(dT)—纤维素(寡聚(dT)—纤维素)或Poly(U)—Sepharse(多聚(U)—琼脂糖)亲和层析技术来纯化mRNA。总RNA在流经寡聚(dT)—纤维素层析柱时,在高盐缓冲液作用下,mRNA 3/—端多聚(A)残基与连接在纤维素柱上的寡聚(dT)残基间配对,形成氢键,使mRNA被吸附在柱上。不具poly(A)结构的RNA,不能发生特异性结合而从柱中流出。结合在柱上的mRNA可以用低盐缓冲液或蒸馏水洗脱。因为在高盐溶液中碱基间的氢键稳定,在低盐状态下易解离,水打破poly(A)与(dT)间的氢键,使mRNA洗脱。

层析中涉及到的缓冲液有两种,一是上样缓冲液,也有人称结合缓冲液。各文献报道的结合缓冲液都由Tris·C1、EDTA、氯化物盐类及去污剂组成。不同之处是有的使用0.5mol/L的NaCl、有的使用0.5mol/L的LiCl。不管使用哪种盐,都为高浓度,以促进poly(A)与寡聚(dT)结合。第二种是洗脱缓冲液,除Tris、去污剂的浓度减半外(也有Tris 量不减半的),最大的变化是不含氯化物或含低浓度的LiCl。其作用是解除Poly(A)与寡聚(dT)的结合,使mRNA洗脱下来。

在没有特制的层析柱时,可以用无菌硅化的巴斯德吸管或lml的注射器做层析柱,出口端用无菌硅烷化过的玻璃纤维填充。寡聚(dT)纤维素用上样缓冲液悬浮后装柱。柱体积在0.25ml左右。装柱后用0.1mol/L 的NaOH 洗柱,上样缓冲液平衡。RNA的样品量一般在2~5mg,体积为lml左右。上样前样品要经过变性处理,置沸水浴中加热数分钟后立即置冰