2010-2018高考真题理科数学分类汇编解析版第16讲 等比数列 下载本文

内容发布更新时间 : 2025/1/4 4:40:12星期一 下面是文章的全部内容请认真阅读。

19.1 121 【解析】由于?所以Sn?1??a1?a2?4,解得a1?1,由an?1?Sn?1?Sn?2Sn?1,

?a2?2a1?11113?3(Sn?),所以{Sn?}是以为首项,3为公比的等比数列,

222213n?1所以Sn???3,所以S5?121.

2220.2-1【解析】由题意,?n?a1?a4?9,解得a1?1,a4?8或a1?8,a4?1,而

?a2?a3?a1?a4?83数列{an}是递增的等比数列,所以a1?1,a4?8,即q?a4?8,所以q?2,因而a1a1(1?qn)1?2n数列{an}的前n项和Sn???2n?1.

1?q1?2221.5【解析】由等比数列的性质可知a1a5?a2a4?a3,于是,由a1a5?4得a3?2,

故a1a2a3a4a5?32,则log2a1+log2a2+log2a3+log2a4+log2a5=

log2(a1a2a3a4a5)?log232?5.

22.50【解析】因?an?是等比数列,∴a1a20?a10a11?a9a12,由a10a11?a9a12?2e5得 ∴a1a20?e5,∴lna1?lna2??lna20?ln(a1a2???a20)?ln(a1a20)10=50.

23.4【解析】 设等比数列{an}的公比为q,q?0.则a8?a6?2a4,

即为a4q4?a4q2?2a4,解得q2?2(负值舍去),又a2?1,所以a6?a2q44. 24.15【解析】a1?1,a2??2,a3?4,a4??8,∴ a1?|a2|?a3?|a4|?15.

325.2,2n?1?2【解析】由a3?a5=q?a2?a4?得q?2;?a2?a4??a1q?q=20,

??得a1?2;∴Sn?2?1?2n?1?2?2n?1?2.

1??a1q4?26.12【解析】设正项等比数列{an}首项为a1,公比为q,则:?2??a1q5(1?q)?312n?16?n得:a1=,q=2,an?2.记Tn?a1?a2???an?,

3225,

?n?a1a2?an?2(n?1)n22n?1.Tn??n,则?252,当n?(n?1)n2,

化简得:2?1?2n1211n?n?522121113?121n?n?5时,n??12. 222当n=12时,T12??12,当n=13时,T13??13,故nmax?12. 27.11【解析】由an?2?an?1?2an?0,可得anq2?anq?2an?0,

由a1?1可知an?0,q?1,求得公比q??2,可得S5=11.

28.2【解析】2(an?an?2)?5an?1,?2an(1?q2)?5anq,?2(1?q2)?5q,解得q?2或q?因为数列为递增数列,且a1?0,所以q?1,?q?2.

1 2?a1(1?q2)?1?q?3a1q?22?3??2a1q?3a1q?a1?2q?2?0??29.【解析】依题意可得,? 4432?a1(1?q)?3aq3?2??2a1q?3a1q?a1?2q?2?01??1?q两式相减可得2a1q4?2a1q2?3a1q3?3a1q?0,即2q?2q?3q?3q?0,

42333。因为q?0,所以q?. 22113n?130.2 2?【解析】a4?a1q3得4?q,解得q?2,

221(1?2n)1a1?a2?????an?2?2n?1?.

1?22解得q??1(舍)或q?0或q?31.【解析】(1)设{an}的公比为q,由题设得an?qn?1.

由已知得q?4q,解得q?0(舍去),q??2或q?2. 故an?(?2)n?1或an?2n?1. (2)若an?(?2)数解.

若an?2n?1,则Sn?2n?1.由Sm?63得2?64,解得m?6. 综上,m?6.

m42n?11?(?2)nm,则Sn?.由Sm?63得(?2)??188,此方程没有正整

332.【解析】(Ⅰ)设数列{xn}的公比为q,由已知q?0.

由题意得??x1?x1q?32,所以3q?5q?2?0, 2?x1q?x1q?2因为q?0,所以q?2,x1?1, 因此数列{xn}的通项公式为xn?2n?1.

(Ⅱ)过P1,Q2,Q3,…,Qn?1, 1,P2,P3,…,Pn?1向x轴作垂线,垂足分别为Q由(Ⅰ)得xn?1?xn?2n?2n?1?2n?1. 记梯形PnPn?1Qn?1Qn的面积为bn. 由题意bn?(n?n?1)n?1?2?(2n?1)?2n?2, 2所以Tn?b1?b2?b3?…+bn

?101=3?2?5?2?7?2?…+(2n?1)?2n?3?(2n?1)?2n?2 ①

又2Tn?3?20?5?21?7?22?…+(2n?1)?2①?②得

n?2?(2n?1)?2n?1 ②

?Tn?3?2?1?(2?22?......?2n?1)?(2n?1)?2n?1 32(1?2n?1)?(2n?1)?2n?1. =?21?2(2n?1)?2n?1. 所以Tn?233.【解析】(Ⅰ)由题意得a1?S1?1??a1,故??1,a1?1,a1?0. 1??由Sn?1??an,Sn?1?1??an?1得an?1??an?1??an,即an?1(??1)??an. 由a1?0,??0且??1得an?0,所以因此{an}是首项为

an?1?. ?an??11?1?n?1(). ,公比为的等比数列,于是an?1????11????1(Ⅱ)由(Ⅰ)得Sn?1?(???1)n,由S5?31?531)?得1?(,

32??132即(???1)5?1,解得???1. 3234.【解析】(I)由an?1?3an?1得an?1?又a1?11?3(an?). 221331???,所以?an??是首项为,公比为3的等比数列. 2222??13n3n?1an??,因此?an?的通项公式为an?.

222(Ⅱ)由(I)知

12 ?nan3?1nn?1因为当n?1时,3?1?2?3于是

,所以

11?. nn?13?12?311111313??...??1??...?n?1?(1?n)?. a1a2an332321113??...??. a1a2an2所以

?a1q?3?a1?135.【解析】(Ⅰ)设{an}的公比为q,依题意得?,解得?, 4aq?81q?3?1?因此,an?3n?1.

n(b1?bn)n2?n?(Ⅱ)因为bn?log3an?n?1,∴数列{bn}的前n项和Sn?. 223n2?n36.,所以a1?S1?1,当n?2时an?Sn?Sn?1?3n?2, 【解析】(Ⅰ)因为Sn?2又n?1时,所以数列an的通项公式为an?3n?2,

an,am成等比数列,只需要an2?a1am, (Ⅱ)要使得a1,即(3n?2)2?1?(3m?2),即m?3n2?4n?2.而此时m?N?,且m?n,

an,am成等比数列. 所以对任意n?1,都有m?N?,使得a1,?a1q?a1?2?a2?a1?237.【解析】由题意可知,?,即?, 24a?3a?a4aq?3a+aq13?2?111