内容发布更新时间 : 2025/1/24 8:37:14星期一 下面是文章的全部内容请认真阅读。
取的第一阶模态将是刚体模态。对于在ABAQUS/Explicit中的准静态分析,第二阶模态的频率将确定合适的时间段。)
⑤.在Interaction模块,删除所有的接触相互作用。
⑥.进入Load模块,在BC Manager(边界条件管理器)中检查在Extract Frequencies分析步中的边界条件。除了边界条件名称CenterBC以外,删除所有的边界条件。将这个留下的采用了对称边界条件的毛坯约束施加到左端。
⑦. 在创建和提交作业前,如果有必要则重新剖分网格。
⑧. 进入Job模块,创建一个作业,命名为Forming-Frequency,采用如下的作业描述:Channel forming –- frequency analysis。提交作业进行分析,并监控求解过程。
⑨.当分析完成时,进入Visualization模块,并打开由这个作业创建的输出数据库文件。从主菜单栏中,选择Plot-->Deformed Shape;或者应用在工具箱中的工具。绘制出一阶屈曲模态的模型变形形状。进一步绘出毛坯的二阶模态,将未变形的模型形状叠加在模型变形图上。
频率分析表明坯件有一个140 Hz的基频,对应的周期为0.00714 s。对于成型分析,我们现在知道最短的分析步时间为0.00714 s。 创建ABAQUS/Explicit成型分析
成型过程的目标是采用0.03m的冲头位移准静态地成型一个凹槽。在选择准静态分析的加载速率时,建议你在开始时用较快的加载速率,并根据需要减小加载速率,更快地收敛到一个准静态解答。然而,如果你希望在你的第一次分析尝试中就增加能够得到准静态结果的可能性,你应当考虑分析步时间是比相应的基频缓慢10到50倍的因数。在这个分析中,对于成型分析步,你将从0.007s的时间开始。这是基于在ABAQUS/Standard中进行的频率分析,它显示出毛坯具有140Hz的基频,对应于0.00714s的时间周期。这个时间周期对应于4.3 m/s的常数冲头速度。你将仔细地检查动能和内能的结果,以检验结果中并没有包含显著的动态影响。
将Standard模型复制成一个新模型,命名为Explicit。如果必要,通过从位于工具栏下方的Model(模型)列表中选择Explicit模型作为当前的模型。使所有接下来的模型改变成为Explicit模型。
在ABAQUS/Standard分析中,在冲头和坯件之间模拟一个初始的缝隙以便于接触计算。在ABAQUS/Explicit分析中则不需要采取这种预防措施。因此,在Assembly模块中,沿U2方向平移冲头-0.001 m。在警告对话框中出现的关于相对和绝对约束中,点击Yes。
在毛坯夹具上施加一个集中力,为了计算夹具的动态反应,必须在刚性体的参考点上赋予一个点质量。夹具的实际质量是不重要的;而重要的是它的质量必须与毛坯的质量(0.78 kg)具有同一个数量级,以使在接触计算中的振荡最小化。选择数值为0.1 kg的点质量。在Property模块中,创建一个点的截面定义,命名为Pointmass。在Edit Section对话框的Inertial Properties域中,键入0.1点质量的值。在参考点RigidRefHolder应用这个截面定义。此外,编辑Steel材料定义来包括7800 kg/m3的质量密度。
进入Step模块。你需要为ABAQUS/Explicit分析创建两个分析步。在第一个分析步中施加夹具力;在第二个分析步中施加冲头压下力。除了命名为Establish Contact I的分析步之外,删除所有其他的分析步,并用一个单一的显式动态分析步替换这个分析步。键入分析步描述为Apply holder force,并指定0.0001 s的分析步时间。这个时间对于施加夹具载荷是适合的,因为它是足够长以避免了动态效果,而且又足够短以防止了对整个作业运行时间的明显冲击。将分析步重新
命名为Holder force。创建第二个显式动态分析步,命名为Displace punch,分析步的时间为0.007s,键入Apply punch stroke作为分析步的描述。
为了帮助确定分析是如何接近于准静态假设,研究各种能量的历史是非常有用的。特别有用的是比较动能和内部应变能。能量历史默认地写入了输出数据库文件。
在这个金属成型分析的第一次尝试中,对于施加的夹具力和冲头压力,你将应用具有默认的光滑参数的表格形式的幅值曲线。进入Load模块,为施加的夹具力创建一个名为Ramp1的表格形式的幅值曲线。在表1中输入幅值数据。为冲头压力定义第二个表格形式的幅值曲线,命名为Ramp2。在表2中输入幅值数据。
在Load Manager(载荷管理器)中,在命名为Holder force的分析步中创建一个集中力,命名为RefHolderForce,在施加的点上指定RefHolder和一个沿着CF2方向大小为-440000的力。对于这个载荷,改变幅值定义为Ramp1。
在Boudary Condition Manager(边界条件管理器)中,删除命名为MidLeftBC和MidRightBC的边界条件。编辑RefDieBC边界条件,这样在Holder force分析步中沿着U2方向的约束为零,不改变其他方向的约束。对于RefHolderBC边界条件,解除沿着U2方向的约束,而其他方向的约束保持不变。在Displace Punch分析步中,改变位移边界条件RefPunchBC,使沿着U2方向的位移为-0.03 m。对于这个边界条件,应用幅值曲线Ramp2。
监视自由度的值。在这个模型中,你将在整个分析步中监视冲头的参考节点的竖向位移(自由度2)。在ABAQUS/Standard成型分析中,由于已经设置了DOF Monitor监视RefPunch的竖向位移,所以你无需做出任何改变。
创建网格和定义作业。在网格Mesh模块中,将用于剖分坯件网格的单元族改变为Explicit,并指定增强沙漏控制,并剖分坯件网格。因为已经将工具模拟成了解析刚性表面,因此无需将它们剖分网格。
在Job模块中创建一个作业,命名为Forming-1,给予作业如下的描述:Channel forming -- attempt 1。
在运行成型分析前,你可能希望知道该分析将需要多少个增量步,进而了解该分析需要多少计算机时间。你可以通过运行数据检查(data check)分析来获得关于初始稳定时间增量的近似值。在这个例题中,从一个增量步到下一个增量步的稳定时间增量不会有太大的变化,因此知道了稳定时间增量,你可以确定完成成型阶段的分析需要多少个增量步。一旦分析开始,你就能够知道每一个增量步需要多少CPU时间,进而知道整个分析需要多少CPU时间。
将模型保存到模型数据库文件中,并提交作业进行分析。监视求解过程;改正任何检测到的模拟错误,并调查任何警告信息的原因。完成整个分析可能需要运行10分钟或更长的时间。 一旦分析开始运行,在另一个视图窗中会显示出你选择来监视(冲头的竖向位移)的自由度值的X-Y曲线图。从主菜单栏中,选择Viewport-->Job Monitor: Forming-1,在分析运行的整个时间中跟踪沿着2-方向冲头位移的发展进程。
评价结果的策略。在查看我们最关心的结果之前,诸如应力和变形形状,我们需要确定结果是否是准静态的。一个好的方法是比较动能与内能的历史。在金属成型分析中,大部分的内能是由于塑性变形产生的。在这个模型中,坯件是动能的主要因素(忽略夹具的运动,没有与冲头和模具相关的质量)。为了确定是否已经获得了一个可接受的准静态解答,坯件的动能应该小于其内能的几个百分点。对于更高的精确度,特别地是对回弹应力感兴趣时,动能应该是更低的。这个方法是非常有用的,因为它应用于所有类型的金属成型过程,而且不需要任何直观地理解在模型中的应力;许多成型过程可能是过于复杂,以至于不允许对结果有一个直观的判断。
虽然是衡量准静态分析的良好和重要的证明,仅凭动能与内能的比值还不足以确任解的质量。你还必须对这两种能量进行独立地评估,以确定它们是否是合理的。当需要准确的回弹应力结果时,这一部分的评估是更增加了重要性,因为一个高度精确的回弹应力解答是高度地依赖于准确的塑性结果。即使动能是非常小的量,如果它包含了高度的振荡,则模型也会经历显著的塑性。一般说来,我们希望光滑加载以产生光滑的结果;如果加载是光滑的,但是能量的结果是振荡的,则结果可能是不合适的。由于一个能量的比值无法显示这种行为,所以你也必须研究动能本身的历史以观察是否是光滑的还是振荡的。
如果动能不能显示出准静态的行为,在某些节点上观察速度的历史可能是有用的,以帮助理解在各个区域中模型的行为。这种速度历史可以表明在模型的哪些区域是振荡的,并产生大量的动能。
评估结果。进入Visulization模块,并打开由这个作业(Forming-1.odb)创建的输出数据库。绘制动能和内能。 创建能量历史的曲线:
①.从主菜单栏中,选择Plot-->History Output。显示出整个模型的伪应变能历史曲线。 ②.从主菜单栏中,选择Result-->History Output。显示出History Output对话框。 ③.从变量的列表中,选择Kinetic energy: ALLKE for Whole Model。
④.点击Plot创建一条ALLKE的历史曲线。显示出整个模型的动能历史曲线。 ⑤.类似地,创建模型内能的历史曲线,ALLIE。
另外,动能的历史与坯件的成型没有明确的关系,这表明这个分析是不适合的。在这个分析中,冲头的速度保持为常数,而主要地依赖于坯件运动的动能却远非是恒定值。在除了开始阶段以外的整个分析步中,动能是内能的一个很小的百分数(小于1%)。即使对于这种严重的加载情况,还是满足了动能必须相对地小于内能地准则。尽管模型的动能只是内能的一个小的分数,它还是有一定的振荡。所以,我们应该以某种方式改变模拟以获得更平滑的解答。 成型分析——尝试2
即使实际上冲头是以几乎接近于常值的速度运动,第一次模拟尝试的结果表明理想的方式是采用不同的幅值曲线以允许坯件更光滑地加速。当考虑应用什么类型的加载幅值时,记住在准静态分析的所有方面,光滑性是重要的。最偏爱的方法是尽可能光滑地移动冲头,在理想的时间内移动理想的距离。
应用一种光滑地施加的冲头力和一段光滑地施加的冲头距离,我们现在将分析成型阶段;我们将与前面获得的结果进行比较。在Load模块中,定义一条光滑步骤幅值曲线,命名为
Smooth1。输入在表13-1中给出的幅值数据。创建第二条光滑步骤幅值曲线,命名为Smooth2,应用在表13-2中给出的幅值数据。在Holder force分析步中,修改RefHolderForce载荷,使它采用Smooth1的幅值。在Displace punch分析步中,修改位移边界条件RefPunchBC,使它采用Smooth2的幅值。通过设置在分析步开始时的幅值为0.0和在分析步结束时的幅值为1.0,
ABAQUS/Explicit创建了一个幅值定义,它的一阶和二阶导数都是光滑的。因此,应用一条光滑步骤幅值曲线对位移进行控制,也使我们确信了其速度和加速度是光滑的。
在Job模块中,创建一个作业,命名为Forming-2,给予作业如下的描述:Channel forming -- attempt 2。将模型保存到模型数据库文件中,并提交作业进行分析。监视求解过程;改正任何检
测到的模拟错误,并调查任何警告信息的原因。完成整个分析可能需要运行10分钟或更长的时间。
评估第二次尝试的结果。动能的响应是明显地与坯件的成型相关:在第二个分析步的中间阶段出现了动能的峰值,它对应于冲头速度最大的时刻。因此,动能是适当的和合理的。动能与内能的比值是相当小的,并显示出是可接受的。
两次成型尝试的讨论。我们评价结果可接受性的初始原则是动能与内能相比必须是小量。我们发现即使对于最严重的情况,尝试1,这个条件似乎是仍然得到了满足。增加光滑步骤幅值曲线帮助减小了在动能中的振荡,得到了令人满意的准静态响应。
附加的要求——动能和内能的历史必须是适当的和合理的——是非常有用的和必要的,但是它们也增加了评价结果的主观性。在一般更为复杂的成型过程中,强调这些要求可能是很困难的,因为这些要求的提出需要对成型过程的行为的一些直观考虑。
成型分析的结果。我们现在已经满意了关于成型分析的准静态解答是合适的,我们可以研究感兴趣的某些其它结果。图13-14显示了应用ABAQUS/Standard和ABAQUS/Explicit得到的在坯件中Mises应力的比较。从图中显示在ABAQUS/Standard和ABAQUS/Explicit分析中的应力峰值的差别在1%以内,并且在坯件中整个应力的等值线图是非常类似的。为了进一步检验准静态分析结果的有效性,你应该从两个分析中比较等效塑性应变的结果和最终变形的形状。图13-15显示了在坯件中等效塑性应变的等值线图,而图13-16显示了由两个分析预测的最终变形形状的覆盖图。对于ABAQUS/Standard和ABAQUS/Explicit的分析,等效塑性应变的结果彼此相差在5%以内。另外,最终变形形状的比较显示出显式准静态分析的结果与ABAQUS/Standard静态分析的结果吻合得极好。你也应该比较由ABAQUS/Standard和ABAQUS/Explicit分析预测的稳态冲头压力。如图13-17可见,由ABAQUS/Explicit预测的稳态冲头压力值比由
ABAQUS/Standard预测的值大约高12%。在ABAQUS/Standard和ABAQUS/Explicit结果之间的这个差别主要是源于两个因素。首先,ABAQUS/Explicit规则化了材料数据。其次,在两个分析软件中摩擦效果的处理稍有区别;ABAQUS/Standard使用罚函数摩擦,而ABAQUS/Explicit使用动力学摩擦。
从这些比较中,可以明显看出ABAQUS/Standard和ABAQUS/Explicit都有能力处理诸如本例问题的困难接触分析。然而,在ABAQUS/Explicit中运行这类分析有某些优势:与ABAQUS/Standard相比,ABAQUS/Explicit能够更容易地处理复杂的接触条件和采用较少的分析步和边界条件进行计算。特别地,ABAQUS/Standard分析需要五个分析步和附加的边界条件以确保正确的边界条件和防止刚体运动。在ABAQUS/Explicit中完成同样的分析只需要两个分析步和无需附加边界条件。然而,当选择ABAQUS/Explicit进行准静态分析时,你必须明确在一个合适的加载速率下你可能需要进行迭代。在确定加载速率时,建议你开始时采用较快的加载速率,并根据需要减小加载速率。这可以帮助优化对分析进行求解的时间。 加速分析的方法
现在我们已经获得了一个可接受的成型分析的解答,我们可以尝试采用更短的计算机时间来获得类似的可接受的结果。因为采用显式动态标准的成型问题的实际时间是过大的,所以大部分成型分析都需要过多的计算机时间以至于无法按照它们自己的物理时间尺度进行运算;若使分析在一个可接受的计算机时间范围内运行,常常需要对分析做出改变以减少计算机成本。有两种节省分析成本的方法:
①.人为地增加冲头的速度,从而在一个更短的分析步时间内发生同样的成型过程。这种方法称为加载速率放大(load rate scaling)。
②.人为地增加单元的质量密度,从而增大稳定时间极限,允许分析采用较少的增量步。这种方法称为质量放大(mass scaling)。
这两种方法等效地做相同的事情,除非模型具有率相关材料或者阻尼。