内容发布更新时间 : 2025/1/24 7:20:55星期一 下面是文章的全部内容请认真阅读。
所以四棱锥P?ABCD的体积为V?1?63?2?43. 319.解:(1)根据阅读用时频数分布列表可求
0?0.5100.5?1201?1.5501.5?2602?2.5402.5?320????????????1.65; 220022002200220022002200故该市市民每天阅读用时的平均值为1.65小时;
(2)设参加交流会的男代表为A1,A2,a,其中A1,A2喜欢古典文学, 则男代表参加交流会的方式有:A1A2,A1a,A2a,共3种; 设选出的女代表为:B,b1,b2,其中B喜欢古典文学, 则女代表参加市交流会的方式有:Bb1,Bb2,b1b2,共3种, 所以参加市交流会代表的组成方式有:
?Bb1,A1A2?,?Bb1,Aa1?,?Bb1,A2a?,?Bb2,A1A2?,?Bb2,Aa1?,?Bb2,A2a?,?bb12,A1A2?,?bb12,Aa1?,?bb12,A2a? 共9种,
其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是:
?Bb1,A1A2?,?Bb2,A1A2?,?bb12,A1A2?,?bb12,Aa1?,?bb12,A2a?共5种,所以,喜欢古典文学的男代表多于
喜欢古典文学的女代表的概率是P?5. 9x2?y2?1的右焦点F的坐标为?2,0?, 20.解证:(1)显然椭圆C:5设AB所在直线为:y?k?x?2??k?0?,且A?x1,y1?,B?x2,y2?.
?y?k?x?2??联立方程组:?x2,得:?5k2?1?x2?20k2x??20k2?5??0;
?y2?1??520k220k2?5,x1x2?其中x1?x2?, 225k?15k?1?10k22k?1,?2?,ON所在直线方程为:y??x. 点N的坐标为?25k?5k?15k?1?FM所在的直线方程为:y??1?x?2?, k1?y???x?2??5?k联立方程组:?,得xM?,
2?y??1x?5k?故点M在定直线x?5上; 21?5?5得点M的坐标为?,??,且F?2,0?, 2?22k?(2)由(1)得:由xM?uuur?11?uuuur?51?则MF???,?,MO???,?,
22k???22k?uuuruuuurMFgMOcos?OMF?uuuruuuur?MFgMO51?225k4?10k2?144k?, 422225k?26k?1k?125k?1g4k24k225k4?10k2?116512(当且仅当不等式取等号), k??1??421525k?26k?1325k2?26?2k若cos?OMF取得最小值时,?OMF最大,此时x1?x2?2,x1x2??1; 21?1?65AB?1?k2x1?x2?1??22?4?????;
525??116?5??1?FM???2?????0????;
122k42????4?51330S?MAB??AB?MF?.
21021.解:(1)函数f?x?的定义域为???,???,f??x??ex??x?1?ex?kx?xex?kx?xex?k, ①当k?0时,令f??x??0,解得x?0,所以f?x?的单调递减区间是???,0?,单调递增区间是?0,???, ②当0?k?1时,令f??x??0,解得x?lnk或x?0,
所以f?x?在???,lnk?和?0,???上单调递增,在?lnk,0?上单调递减, ③当k?1时,f??x??0,f?x?在???,??上单调递增,
④当k?1时,令f??x??0,解得x?0或x?lnk,所以f?x?在???,0?和?lnk,???上单调递增,在
22???0,lnk?上单调递减;
(2)f?0???1, ①当k?0时,f?1???零点,
在区间???,0?中,因为f?x???x?1?ex?k?0,又f?x?在?0,???上单调递增,所以函数f?x?在?0,???上只有一个2k2kx?x?1?x2, 2222取x??1,于是
kk?2?k?2??2?f??1????1??1???1????0,
2?k?2?k??k?又f?x?在???,0?上单调递减,故f?x?在???,0?上也只有一个零点, 所以,函数f?x?在定义域???,???上有两个零点;
②当k?0时,f?x???x?1?e在单调递增区间?0,???内,只有f?1??0.
x而在区间???,0?内f?x??0,即f?x?在此区间内无零点. 所以,函数f?x?在定义域???,???上只有唯一的零点. 22.解:(1)由?cos??x,得直线l极坐标方程:?cos??4,
??x?1?2cos?曲线C的参数方程为?(?为参数),消去参数?得曲线C的普通方程为
??y?1?2sin??x?1???y?1?22222?2,即x2?y2?2x?2y?0,
2将??x?y,?cos??x,?sin??y代入上式得??2?cos??2?sin?, 所以曲线C的极坐标方程为??2cos??2sin?; (2)设A??1,??,B??2,??,则?1?2cos??2sin?,?2?4,所以 cos??1?2cos??2sin??cos?sin?cos??cos2?112??1??????sin???cos2????sin?2????OB?2424444?4?OA,
因为0????4,所以
?4?2???4?2??3??,所以?sin?2????1, 424??所以
?11?2?OA12??11?2?,故的取值范围是?,?sin?2??????. ?24OB244?44???1?x?3,x???21???11?x?????x?2?x?2?23.解:(1)f?x???1?3x,??x?2,原不等式等价于:?或?, 2或?22??x?3?2???x?3?2??1?3x?2??x?3,x?2??解得:x??1,或?1?x?2,或x?2, 3??1?3?综上所述,不等式解集是:?x|x??1或x???;
(2)?b?R,a?b?a?b?f?x?恒成立等价于a?b?a?b??max?f?x?max.
因为a?b?a?b??a?b???a?b??2a,所以a?b?a?b的最大值为2a;
1515x??时,f?x??;??x?2时,?5?f?x??;x?2时,f?x???5,
2222所以f?x?max?
5555,所以由原不等式恒成立,得:2a?,解得:a?或a??. 2244