内容发布更新时间 : 2025/1/24 0:42:46星期一 下面是文章的全部内容请认真阅读。
例2(教材P75页探究2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。
四、课堂引入
勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
五、例习题分析 例1(教材探究1)
DCAB分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。⑸注意给学生小结深化数学建模
A思想,激发数学兴趣。
C例2(教材P75页探究2)
OBD分析:⑴在△AOB中,已知AB=3,AO=2.5,利用勾股定理计算OB。
⑵ 在△COD中,已知CD=3,CO=2,利用勾股定理计算OD。则BD=OD-OB,通过计算可知BD≠AC。
⑶进一步让学生探究AC和BD的关系,给AC不同的值,计算BD。 六、课堂练习
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。
2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是
C米。
B
A30
BCA
2题图 3题图 4题图
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。
4.如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少?
七、课后练习
1.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,
∠B=60°,则江面的宽度为 。
2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。
PQRABC3.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。
4.如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E、F分别为BD、CD中点,试求B、C两点之间的距离,钢索AB和AE的长度。 (精确到1米)
BEDFCA