内容发布更新时间 : 2024/11/2 22:28:34星期一 下面是文章的全部内容请认真阅读。
专业文档
惠州市2016届高三第二次调研考试
数 学(理科)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分。在每个小题给出的四个选项中,只有一项是符
合题目要求的。
(1)设集合A?x|2x?4,集合B??x|y?lg(x?1)?,则A(A)(1,2)
(B) (1,2]
(C)
??B等于( )
(2)在复平面内,复数(A)第一象限
1?i所对应的点位于( ) 1?i(B)第二象限
(C)第三象限
(D)第四象限
x2y2(3)已知双曲线2?2?1的一条渐近线为y?2x,则双曲线的离心率等于( )
ab(A)3
(B)2
(C)5
(D)6
(4)已知两个非零单位向量e1,e2的夹角为?,则下列结论不正确的是( ) ...(A)e1在e2方向上的投影为cos? (B)e1?e2 (C)e1?e2?e1?e2
22????(D)e1?e2?1
34主视图
(5)一个三棱锥的三视图是三个直角三角形,如图所示, 则该三棱锥的外接球表面积( ) (A)29? (B)30? (C)
珍贵文档
2侧视图
29? (D)216? 2俯视图
专业文档
(6)惠州市某机构对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在?20,45?岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如右图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( )
(A)31.6岁 (B)32.6岁 (C)33.6岁 (D)36.6岁 (7)函数f?x??Asin??x???(其中A?0,???2)的图像如图所示,为了得到
???g?x??cos?2x??的图像,只需将f(x)的图像( )
2???7?x??个长度单位 (B)向右平移个长度单位 33??(C)向左平移个长度单位 (D)向右平移个长度单位 66(A)向左平移(8)若函数f(x)?k?a?ax?x(a?0且a?1)在???,???上既是奇函数又是增函数,则g(x)?loga(x?k)的图像是( ) yO1yyxyO
2xO12?12xO?12x
(A) (B) (C) (D)
(9)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数有( ) (A)144个 (B)120个 (C)96个 (D)72个
?x?2y?4?0x?y?3?x?2(10)已知变量x,y满足?,则的取值范围是( )
x?2?x?y?2?0?(A)?2,? (B)?,? (C)?,? (D)?,2?
242524432432(11)由等式x?a1x?a2x?a3x?a4?(x?1)?b1(x?1)?b2(x?1)?b3(x?1)?b4,
?5????55????45????5???定义映射f(a1,a2,a3,a4)?b1?b2?b3?b4,则f(4,3,2,1)?( )
珍贵文档
专业文档
(A)0 (B)10 (C)15 (D)16
(12)如图,正五边形ABCDE的边长为2,甲同学在?ABC中用余弦定理解得
1,据此可得AC?8?8cos108,乙同学在Rt?ACH中解得AC?cos72cos72的值所在区间为( )
(A)?0.1,0.2? (B)?0.2,0.3? (C)?0.3,0.4? (D)?0.4,0.5?
第Ⅱ卷
ABCEHD本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个考生都必须做答。第22题~第24题为选考题,考生根据要求做答。 二.填空题:本大题共4小题,每小题5分。
(13)曲线y?x与直线y?x所围成的封闭图形的面积为 . (14)在?ABC中,设角A,B,C的对边分别是a,b,c,
2且?C?60?,c?3,则a?23cosA? .
sinB(15)如图所示程序框图,输出的结果是 .
22?(16)若数列?an?满足an?an?1?p(p为常数,n?2,n?N),则称
数列{an}为等方差数列,p为公方差,已知正数等方差数列{an}的首项
a1?1,且a1,a2,a5成等比数列,a1?a2,设集合
a?50??11?A??TnTn???a1?a2a2?a3????1?,1?n?100,n?N??,取A的非空子集B,
an?an?1??若B的元素都是整数,则B为“完美子集”,那么集合A中的完美子集的个数为 . 三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分)
已知?an?是公差为2的等差数列,且a3?1是a1?1与a7?1的等比中项. (Ⅰ)求数列?an?的通项公式;
(Ⅱ)令bn?a2n,求数列?bn?的前n项和Sn.
珍贵文档