最新-基于VAR模型对投资与就业的实证研究 精品 下载本文

内容发布更新时间 : 2025/1/8 23:35:28星期一 下面是文章的全部内容请认真阅读。

基于VAR模型对投资与就业的实证研究

一、数据的选取及其预处理在计量经济学中,就通常方法而言。 对数据取对数后的变量分别表示为和。

做这种变换,不影响数据间短期调整效应以及长期稳定关系。

采取这种做法更为重要的原因有三个,其一是自然对数变换,是-变换中最为重要的形式之一;其二是双对数线性模型是具有最小的平方预测误差的;其三是多数经济变量时间序列服从,或者是近似服从对数正态分布,而非正态分布。 二、实证分析1变量平稳性检验。

数据需要平稳性,本次分析是在利用模型来进行协整分析的。

根据协整检验的要求,在进行数据协整分析之前,要对数据进行平稳性检验,以确保时间序列的平稳性。

本次分析采用最常用的检验,结果显示和这两组时间序列数据都是一阶单整的。

2模型滞后阶数的选择。

模型是计量经济模型的一种,采用多方程联立的形式,而不以严格的经济理论为纲。

在联立方程组的每个方程中,内生变量要对模型的全部内生变量的滞后值进行回归,来估计全部内生变量间的动态关系。

在模型中,除了要满足平稳性条件外,还要确定滞后期。

如果滞后期太小,误差项会有严重的自相关性,并会非一致性的估计参数。 选择最优滞后期是根据和信息准则来确定的。

最优阶数是当二者达到最小时的阶数,否则,就无法判断,并进一步引入检验进行取舍。

在本模型中,由检验得出,最优滞后期为2。 3格兰杰因果检验。

由上述分析可以看出,与之间是有协整关系的,但是协整关系仅能表明二者有因果关系,无法显示因果关系的方向,即何者为原因何者为结果。 所以需要进一步检验二者的关系。

将与建立一个,根据模型的滞后阶数来决定滞后阶数,根据之前的分析,选择滞后阶数为2。

从检验结果知,在滞后阶数为2时,与之间互为格兰杰原因。 这说明投资与就业人数之间相互影响。 4脉冲响应。

脉冲响应函数受到变量顺序的影响,因此其结果与分析的的主观因素有关。 影响过程和及其方向,可以借助脉冲响应函数来进行分析。 所以可以检验整个系统的脉冲响应函数,来补充分析的结果。 由检验结果知,投资对就业人数存在正向的影响。

这说明了投资可以促进就业人数的增加,且图像成上扬之势,说明投资对就业人数在长期来说影响更大、更显著。 而就业人数对投资的影响在短期更显著。

三、结论及建议本文采用1981-2010三十年间的数据,利用模型,通过平稳性检验、格兰杰因果检验和脉冲响应分析等方法,对近三十年来投资对就业的促进作用进行了分析,可得出全社会固定资产投资和就业人数互为格兰杰原因。 二者互相影响。

分析表明,投资对就业的增长有正向作用,投资的增长极大地促进了就业的增长,而就业的增长也会促进投资的提高,二者互为因果。

综合以上分析,本文给出以下建议在我国,投资的增长是增加就业、缓解就业高压的重要途径之一,为保证就业,在维持现有全社会固定资产投资水平的基础上,要保持一定的投资额度的增加以促进就业人数的增加。 本文作者张也工作单位武汉大学经济与管理学院