内容发布更新时间 : 2025/1/8 5:51:35星期一 下面是文章的全部内容请认真阅读。
▲▲最新课题 函数的综合应用 版教学资料—数学▲▲ 章节 课型 复习课 教法 讲练结合 第三章 教学目标1. 通过复习学生能掌握解函数应用题来解题的一般(知识、能方法和步骤 力、教育) 2. 会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。 教学重点 函数应用题的审题和分析问题能力 教学难点 函数应用题的审题和分析问题能力。 教学媒体 学案 教学过程 一:【课前预习】 (一):【知识梳理】 1.解决函数应用性问题的思路 面→点→线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。 2.解决函数应用性问题的步骤 (1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问题的本质抽象转化为数学问题。 (2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。 (注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。) 3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。 (二):【课前练习】 1.油箱中存油20升,油从油箱中均匀流 出,流速为0.2升/分钟,则油箱中剩余 油量 Q(升)与流出时间t(分钟)的函数关系是( ) A.Q=0.2t; B.Q=20-2t; C.t=0.2Q; D.t=20—0.2Q 2.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该工厂对这种产品来说( ) A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减小 B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平 C.l月至3月每月生产总量逐月增加,4、5两月均停止生产 D.l月至3月每月生产总量不变,4、5两月均停止生产 3.某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高( ) A.8元或10元; B.12元; C.8元; D.10元 4.已知M、N两点关于y轴对称,且点M在双曲线y?21上,点N在直线y?x?3上,2x设点M(a,b),则抛物线y??abx?(a?b)x的顶点坐标为 。 5.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后y与x成反比例如图所示.现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息填空: ⑴药物燃烧时,y关于x的函数关系式为_______, 自变量x的取值范围是_________; (2)药物燃烧后y关于x的函数关系式为___________. 二:【经典考题剖析】 1.如图( l )是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量 x 的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会。乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏。公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏。根据这两种意见,可以把图( l )分别改画成图( 2 )和图( 3 ) , ①说明图( 1 )中点 A 和点 B 的实际意义: ②你认为图( 2 )和图( 3 )两个图象中,反映乘客意见的是 ,反映公交公司意见的是 . ③如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图(4)中画出符合这种办法的 y 与 x 的大致函数关系图象。 2. 市煤气公司要在地下修建一个容积为10m的圆柱形煤气储存室. (1)储存室的底面积S(单位:m)与其深度d(单位:m)有怎样的函数关系? (2)公司决定把储存室的底面积S定为500m,施工队施工时应该向下挖进多深? (3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。 3.甲车在弯路作刹车试验,收集到的数据如下表所示: 速度x(千米/小时) 刹车距离y(米) 0 0 5 10 3 4224315 15 420 2 25 356 4 … … (1)请用上表中的各对数据(x,y)作为点的坐标,在平面坐标系中画出甲车刹车距离y(米)与x(千米/时)的函数图象,并求函数的解析式。 (2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了。事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数 ,请你就两车的速度方面分析相撞的原因。