2014数学建模国赛A题优秀论文 下载本文

内容发布更新时间 : 2025/1/1 20:27:29星期一 下面是文章的全部内容请认真阅读。

2014高教社杯全国大学生数学建模竞赛

编 号 专 用 页

评 阅 人 评 分 备 注 赛区评阅编号(由赛区组委会评阅前进行编号):

赛区评阅记录(可供赛区评阅时使用):

全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

嫦娥三号软着路轨道设计与控制策略

摘要

本文主要为分阶段研究嫦娥三号的软着陆轨道设计与最优控制策略。 建立模型一确定近月点和远月点的位置,以及嫦娥三号速度大小与方向。首先以月球中心为坐标原点建立空间坐标系,根据计算的作用力可知地球影响较小,故忽略不计。然后将嫦娥三号软着陆看作抛物线的运动过程,计算在最大推力下的减速运动,求得月面偏移距离为 ,由此计算出偏移角度为15.25°。从而得出近月点和远月点的经纬度分别为(34.76°W,44.12°N)和(34.76°E,44.12°S)。最后在软着陆的椭圆轨道上,由动力势能和重力势能的变化,计算出嫦娥三号在远月点和近月点的速度分别为 和 ,沿轨道切线方向。

建立模型二和模型三确定着陆轨道和在6个阶段的最优控制策略。模型二主要对主减速阶段和快速调整阶段进行初步分析。模型三分六个阶段确定轨道和最

假设推力 最大,将最优燃耗优控制策略,主减速阶段建立目标函数燃料 ,

软着陆问题转化为最短时间控制问题,然后采用拟牛顿法和四阶Admas预测-校正得到 ;快速调整阶段采用重力转弯制导,在假设条件下对嫦娥三号进行受力分析,得到嫦娥三号的动力学模型,然后通过开关控制得到燃耗最优控制,并画出仿真图;粗避障阶段采用多项式制导,通过初始状态和末端状态反解多项式系数进而求取标称轨迹,然后将避障区域网格化,比较网格内的方差大小确定最优区域范围;精避障阶段需在满足本文提出的避障原则式 下搜索全局最优解,以网格区域总体得分 作为目标函数,得到最优区域为坐标 附近,并以螺旋搜索法搜索安全半径的个数。其余阶段仅对其做简单物理分析后绘制出六个阶段的着陆轨道。

建立模型四做相应的误差分析和敏感性分析。首先以模型二为基础进行误差分析,当主减速阶段的推力 、初始质量 变化时,计算嫦娥三号质量 和燃料消耗速率的变化趋势。再以模型三为基础进行分析,对初始高度变化前后主减速阶段的 的偏角 和 和着陆轨道进行对比分析并计算误差。然后进行敏感性分析,主要利用蒙特卡洛分析着陆轨道的粗避障阶段和精避障阶段月面不同地形高度,对嫦娥三号降落时所需调整概率大小的影响,接着分析嫦娥三号着陆占地面积大小对着陆调整概率 的影响。

关键字:抛物线、燃料 、拟牛顿法、Admas、网格化、蒙特卡洛模拟