数学建模 人口增长详解 下载本文

内容发布更新时间 : 2024/12/22 20:50:30星期一 下面是文章的全部内容请认真阅读。

数学建模

摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题

是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。因此研究和解决人口问题在我国显得尤为重要。我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。 人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。人口每增加十亿的时间,有一百年缩短为十几年。我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。

长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。 本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。 (2):中国人口的Logistic图形,标出中国人口的实际统计数据进行比较。

而且利用MATLAB图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。

关键词:

指数增长模型 Logistic模型 MATLAB软件 人口增长预测

1.问题的提出

下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(t?0),N0?101654万人,

Nm?200000万人。

年 人口 (万) 1982 101654 1983 103008 1984 104357 1985 105851 1986 107507 1987 109300 1988 111026 1989 112704 1990 114333 1991 1992 1993 1994 1995 1996 1997 1998 年 人口 115823 117171 118517 119850 121121 122389 123626 124810 (万) 要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。 (2)建立中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。 (3)利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。 (4)利用MATLAB图形,画出两种预测模型的误差比较图,并分别标出其误差。 【注】常微分方程一阶初值问题的MATLAB库函数为:ode45。 语法为:[t,Y] =ode45(odefun,tspan,y0)

2.问题的分析

人口的变化受到众多方面因素影响,因此对人口的预测与控制复杂,很难再一个模型中综合考虑到各个因素的影响。要预报未来若干年的人口,最重要的影响因素自然是今年的人口和今后这些年的增长率(即人口出生率减去死亡率),根据这两个数据进行人口预报是十分容易的。例如根据我国国家统计

1

陈芳、史忠英:人口增长的年龄结构模型

局1990年10月30日归表的公报。1990年7月1日我国人口总数为11.6亿过去8年的平均年增长率为1.48%。如果今后的年增长率保持这个数字,那么容易算出,一年后我国人口为11.6*(1+1.0148)=11.77(亿),10年后即2000年警卫116*(1+0.0148)^10=13.44(亿)。这种算法用式子表示也十分简单。记人口为X0,k年后人口为Xk,年增长率为r则预报公式为:

Xk=X0(1+r)^k (1)

显然,这个公式的基本前提是年增长率r保持不变。这个条件在什么情况下才能成立,如果不成立又该怎么办。在历史上,人口模型的发展过程回答这个问题。

早在18世纪人们就开始进行人口预报工作了,一二百来年发展了许多模型,指数增长模型和Logistic模型是其中最简单的两种模型。

3.模型一 3.1模型假设:

(1)假设不存在某抽样年龄段出现0死亡概率

(2)假设人口平稳增长,无大行自然灾害,战争等因素影响 (3)假设境内外迁移率对我国未来人口影响不计 (4)人口净增长率(即出生率减去死亡率)为常数 (5)时刻t的人口函数是连续可微的

3.2 名词解释与符号说明 t 表示年份(选定初始年份t=0)

r 表示人口增长率 x表示人口数量

3.3 模型的建立及求解

记 时刻t的人口为x(t)当烤翅一个国家或一个很大的地区人口时,x(t)是很大的整数。为

了利用微积分这一数学工具,将x(t)视为连续的,可微的函数。记初始时刻(t=0)的人口为X0,人口增长率为r,r是单位时间内x(t)的增长量与x(t)的比例系数。根据r是常数的基本假设,t到t+Δt时间内人口的增量为:

x(t+Δt)-x(t)=rx(t)Δt 于是x(t)满足如下的微分方程: {dx/dt=rx

x(0)=x0 (2) }

有这个线性常系数微分方程容易得出 x(t)=x0 *e^(rt)

表明人口将按指数规律无限增长(r>0)。 将t以年为单位离散化,(3)是表明,人口以e^r为公比的等比数列增长因为这时候r表示年增长率通常r<<1,所以可用近似关系e^r=1+r可得出

x(t)≈x0(1+r)^t (4)

(1) 式与(4)式比较克制前面给出的预报公式(1)不过是指数增长模型离散形式得近似表示。 (2) 由(3)或(2)式给出的模型,与19世纪以前欧洲一些地区的人口统计数据可以很好的吻

合。

2

数学建模

3.4 模型检验

98年由指数增长模型预测出的人口数与实际人口数相差最小,而且其他年份的真实值与预测值之间有差别 年 1991 1992 1993 1994 1995 1996 1997 1998 实际人口(万人) 114333 115823 117171 118517 119850 121121 122389 123626 指数增长模型 (万人) 115616 116914 118226 119553 120894 122251 123623 误差 207 257 291 297 227 138 3 其中人口的自然增长率为这几年的平均增长率r=0.01116,指数增长模型预测的结果很好额反映了实际情况。按此模型预测现在中国人口已超过13亿,到2016年中国人口将超过15亿。我们看到,尽管中国人口调控政策比较得力,但中国近几年处于高生育期,按指数增长模型预测的结果均比实际人口要少。同时由于中国人口调控政策比较得力,中国人口的自然增长率在逐年下降,已经从1991年的千分之十五降到1998年的千分之十左右。而按照近几年的平均增长率r=0.01116预测,肯定和实际之间有一定的误差。

随着人口的增加,自然资源、环境条件等因素对人口继续增长的阻滞作用越来越明显。如果当人口较少时人口增长率还可以看做常数的话,那么当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少,许多国家人口增长的实际情况完全证明了这点。为了生存及人类文明程度的不断提高,顺其自然地会采取有效措施来控制人口的增长,使增长率成为一个递减数,而可供人类生存的自然资源、环境等条件也为人口数量的最大值给予了强硬的限制。这就导致了比较适合于人口发展规律的新数学模型的产生。

3.5 模型的应用于推广

用指数增长模型的确可以预测人口的增长 但是他只适合与短期的人口预测,为了使人口预报特别是长时期预报更好的符合实际情况,必须修改指数增长模型关于人口增长率是常数这个假设了。

为了生存及人类文明成都的不断提高,顺其自然的回采取有效措施来控制人口增长,式增长率成为一个递减数而可供人类生存的自然资源、环境等条件也为人口数量的最大值给予了强硬的限制。这就导致了比较适合于人口发展规律的新数学模型的产生。

4. 模型二 4.1 假设

(1)地球上的资源有限,设为1;而一个人的正常生存需要占用资源1/P*

(2)在时刻t,人口增长速率与当时人口数成正比,为简单起见也假设与当时剩余资源s-1-P/P*成正比;比例系数r*表示人口固有增长率;

(3)社人口数P(t)足够大,可以视为连续变量处理,且P(t)关于t连续可微。

3