电动汽车驱动电机实训报告 下载本文

内容发布更新时间 : 2024/5/18 10:23:25星期一 下面是文章的全部内容请认真阅读。

电 实 训 报 告

汽工1302

黄 祥 吉

驱动

图给出三相BLDCM 控制系统的六开关逆变器拓扑图。根据无刷直流电机的特点,为了减小转矩脉动,提高电机控制性能,要求加在电机定子上的电流为方波,并与电机的梯形反电动势严格同步,每相电流导通120。表给出图所示的六开关逆变器的开关器件导通顺序。

由表可见,六开关逆变器中,根据开关器件的状态,可组成6个状态组合或电压矢量,即:(0,一1,1)、(1,一1,0)、(1,0,一1)、(0,1,一1)、(一1,1,0)、(一1,0,

1),其中,1表示上桥臂导通,一1表示下桥臂导通,0表示没有管子导通。如(0,一1,1)表示B相的下桥臂和C相的上桥臂导通,即VS5,Vs6导通,A相处于不导通状态。这样在任何时刻总是只有两相处于导通状态,即任何时刻总有一相的两个开关器件不参与工作 。 开关磁阻电机的控制系统。

开关磁阻电机作为一种新型调速电机,兼有直流和交流调速的优点,适用的领域很广。它是由磁阻电机与电子开关驱动控制电路组成一体的能量换转机构。

如图所示为四相的开关磁阻电机。图表示导通顺序A、B、C、D时定转子工作情况。图4a表示V1导通,A相绕组通电,而其余的三相绕组断电,因此转子磁1.1′受到气隙中弯曲磁力线的切向磁拉力而产生转矩,使转子沿逆时针旋转,转子磁极1.1′向定子磁极AA′趋近,直到两者重合。此时,控制器据位置传感器的关断信号,去控制驱动器,关断V1,切断A相绕组电流,紧接着控制器根据位置传感器的开、断信号,依次使V2、V3、V4通、断,使B、C、D相绕组顺序的通与断,使转子受同一方向转矩作用,沿逆时针的运行。若改变相电流大小,则可改变电机转矩和转速。

总之,国内已经开发出了以上四种电机驱动系统,取得了很大的技术进步,已经在车辆上获得了应用。但是,还存在着需要改进之处。就交流感应电机电控系统而言,国内的绝大多数电动效率在70%以上区域范围占整个工作的区域还在80%以下;电机在低速运行过程中,输出转矩脉动性过大;在高速运转时可输出的转矩偏小,加载能力差,且转矩降落略大;甚至在一定转速范围内存在较大电磁振动(噪音),有待于进一步解决。四种电机电控系统的可靠性都有待进一步提高以适应产业化要求。

直流电机因其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和

闭环位置伺服控制系统的最佳选择。随着计算机在控制领域的发展,直流电机的应用也更加广泛。本文主要介绍了采用N沟道增强型场效应管,基于H桥的直流电机驱动控制电路中H 桥功率驱动电路设计、电荷泵电路设计、电机驱动逻辑与放大电路设计,以及直流电机的PWM调速控制。

关键字: H桥 直流电机驱动控制电路 N沟道增强型场效应管 PWM

1.直流电机驱动控制电路总体结构

直流电机驱动控制电路分为电机驱动逻辑电路、电荷泵电路、驱动信号放大电路、H桥功率驱动电路等四部分部分,其电路框图如图1所示。如图所示,电机驱动控制电路的外围接口简单,主要控制信号有Dir(电机运转方向信号), PWM(电机调速信号)及Brake(电机制动信号),Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。

图1 直流电机驱动控制电路框图

2.H桥功率驱动电路原理

H型全桥式电路是使用的最为广泛的直流电机驱动电路,实践证明,H型全桥式电路便于实现直流电机的四象限运行,即分别对应正转、正转制动、反转、反转制动。

H桥功率驱动原理图如图2所示。H型全桥式驱动电路的4只开关管都工作在斩波状态。其中,S1、S2为一组,S3、S4为一组,这两组状态互补,当一组导通时,另一组必须关断。当S1、S2导通时,S3、S4关断,电机两端加正向电压实现电机的正转或反转制动;当S3、S4导通时,S1、S2关断,电机两端为反向电压,电机反转或正转制动。

图2 H桥功率驱动原理图

实际控制中,需要不断地使电机在正转和反转之间切换。这种情况理论上要求两组控制信号完全互补,但是由于实际的开关器件都存在导通和关断时间,绝对的互补控制逻辑会导致上下桥臂直通短路。为了避免直通短路且保证各个开关管动作的协同性和同步性,两组控制信号理论上要求互为倒相,而实际必须相差一个足够长的死区时间,这个校正过程既可通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可通过软件实现,即在状态之前加入适当的延时时间,一般us级单位的延时即可达到效果。

图2中4只续流二极管,可为线圈绕组提供续流回路。当电机正常运行时,驱动电流通过主开关管流过电机。当电机处于制动状态时,电机工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时甚至烧毁。 3.直流电机驱动控制电路设计 3.1 H桥驱动电路设计

在直流电机控制中常用H桥电路作为驱动器的功率驱动电路。由于功率MOSFET是压控元件,具有输入阻抗大、开关速度快、无二次击穿现象等特点,满足高速开关动作需求,因此常用功率MOSFET构成H桥电路的桥臂。H桥电路中的4个功率MOSFET分别采用N沟道型和P沟道型,而P沟道功率MOSFET一般不用于下桥臂驱动电机,因此,用功率MOSFET构成H桥电路的桥臂有两种可行的方案:一种是上下桥臂分别用2个P沟道功率MOSFET和2个N沟道功率MOSFET;另一种是上下桥臂均用N沟道功率MOSFET。