2014全国大学生数学建模竞赛A题获奖论文设计 下载本文

内容发布更新时间 : 2024/12/23 4:00:13星期一 下面是文章的全部内容请认真阅读。

实用文档

承 诺 书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)

日期: 年 月 日 文案大全

实用文档

赛区评阅编号(由赛区组委会评阅前进行编2014高教社杯全国大学生数学建模竞赛

编 号 专 用 页

评 阅 人 评 分 备 注 赛区评阅编号(由赛区组委会评阅前进行编号):

赛区评阅记录(可供赛区评阅时使用):

全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

文案大全

实用文档

嫦娥三号软着陆轨道设计与控制策略

摘 要

在进行载人登月或月面勘测时,需要使飞行器实现月面软着陆以保证人员或设备的安全,但关键问题是着陆轨道与控制策略的设计。本文通过物理中的力学知识以及协方差分析等方法,进行了合理的轨道设计及优化。

针对问题一,对嫦娥三号软着陆的轨道以及六个阶段进行分析,通过机械能守恒定律、开普勒三定律等力学知识,建立了动力学模型。因为嫦娥三号绕月球运行的轨道是偏心率很小的椭圆,所以可以近似看作圆周轨道运动,然后迅速减速进入椭圆轨道,由动能改变量等于重力势能改变量及开普勒第二定律,算出着陆器在近月点与远月点的速度大小分别是1.69km/s和1.633km/s,方向沿运行轨道切线方向。然后根据质点运动学知识求出近月点与着陆点水平距离,进而利用坐标正反算软件算出近月点的经纬度为18.63W,40.83N,进而由空间解析几何知识得出了远月点的坐标(1323.67,1216.08,627.037),并采用Matlab软件画出近月点和远月点在三维空间中的示意图。

针对问题二,嫦娥三号着陆轨道近月点和远月点的位置以及相应速度的大小与方向确定后,需要描述的是嫦娥三号软着陆过程中在不同阶段的运动状态,进而确定出嫦娥三号着陆轨道。由于轨道的设计要以燃料消耗最优为出发点,所以可以在Matlab的平台上采用SFLA?1?优化方法,建立优化模型。将软着陆的动力学方程做归一处理,经过将软着陆轨道离散化,从而将轨道优化问题转变为参数优化问题。通过仿真实验,作出嫦娥三号在软着陆过程中径向速度、推力控制角以及月心距的变化曲线,即设计出了最优软着陆轨道。

针对问题三,在一般的发射任务中,软着陆轨道修正都会选取将着陆器送到满足要求的目标轨道上(例如形成满足条件的环月轨道)的方式,而并非送到目标点上,这是因为后者需要选择合适的目标点使得轨道修正的能耗不会太大,且着陆器还需要在目标点进行变轨从而使得实际轨道与标称轨道重合。考虑到轨道参数的误差相对于轨道参数的标称值是小量,因此可以将轨道运动方程进行线性化,从而得到能够反映轨道参数偏差量的传播关系的误差方程。因此该问题采用协方差分析的方法,将着陆器发动机的一些技术指标的误差作为待考察的随机误差源,通过考虑嫦娥三号的运动轨迹进而评估位置误差和速度误差对飞行轨道的影响。最后,通过对变量F的敏感性分析,当F在1500N到6000N时,位移变化较小,运动轨迹影响较小,因此变量F对运动轨迹不敏感;当F在6000N到7500N时,位移变化较大,对运动轨迹影响较大,因此变量F对运动轨迹比较敏感。

通过仿真计算等验证,说明了建立的模型和计算结果都是可靠的。

关键词:动力学模型,轨道优化,混合蛙跳算法,协方差分析法

文案大全