提高LED出光效率的几个途径 下载本文

内容发布更新时间 : 2024/5/4 11:39:26星期一 下面是文章的全部内容请认真阅读。

2、提高LED出光效率的几个途径 (1)透明衬底技术

InGaAlP LED通常是在GaAs衬底上外延生长InGaAlP发光区GaP窗口区制备而成.与InGaAlP相比,GaAs材料具有小得多的禁带宽度,因此,当短波长的光从发光区与窗口表面射入GaAs衬底时,将被悉数吸收,成为器件出光效率不高的主要原因.在衬底与限制层之间生长一个布喇格反射区,能将垂直射向衬底的光反射回发光区或窗口,部分改善了器件的出光特性.一个更为有效的方法是先去除GaAs衬底,代之于全透明的GaP晶体.由于芯片内除去了衬底吸收区,使量子效率从4%提升到了25-30%.三年前,为进一步减小电极区的吸收,有人将这种透明衬底型的InGaAlP器件制作成截角倒锥体的外形,使量子效率有了更大的提高,如图9所示.显然,这种截角倒锥体形状的器件使透光面积增得更大,在红光区,这类器件的外量子效率可超过50%.

图10指出了各类器件的光通量与正向电流的关系,明显表明了三类器件光通量的差异.对于吸收衬底的器件,由于量子效率很低,极大部分的输入能量变成了热,在很小的正向电流下,器件的结温就升得很高,使光通量迅速下降.透明衬底的LED器件,由于相当一部分输入电能变成了光能,相对地减少了升温效应,使器件可在大得多的电流状态下工作. (2)金属膜反射技术

如果说透明衬底工艺首先起源于美国的HP、Lumileds等公司,那么金属膜反射法主要被日本、台湾等地的一些公司进行了大量的研究与发展.这种工艺不但回避了透明衬底专利,而且,更利于规模生产.其效果可以说与透明衬底法具有异曲同工之妙.该工艺通常谓之MB工艺,其基本要点如图11所示.首先去除GaAs衬底,然后在其表面与Si基底表面同时蒸镀Al质金属膜,然后在一定的温度与压力下熔接在一起.如此,从发光层照射到基板的光线被Al质金属膜层反射至芯片表面,从而使器件的发光效率提高2.5倍以上.实验证明,MB型红色LED,当电流为400mA与800mA时,光通量可分别达到37lm与74lm.该类器件已在日本三肯电气、台湾国联、全新等公司进入小批量生产.与传统器件相比,光效得到了大幅度提高.除MB结构的器件外,台湾国联还开发了一种谓之GB型的高亮度InGaAlP LED的新一代器件.所谓GB是英文Giga Bright的缩写.该工艺是采用一种新型的透明膠,将具有GaAs吸收衬底的LED外延片与一片蓝宝石基板粘合在一起,随后再将GaAs吸收衬底去除,并在外延层上制作电极,从而获得了很高的发光效率. (3)表面微结构技术

表面微结构工艺是提高器件出光效率的又一个有效技术,该技术的基本要点是在芯片表面刻蚀大量尺寸为光波长量级的小结构,每个结构呈截角四面体状,如此不但扩展了出光面积,而且改变了光在芯片表面处的折射方向,从而使透光效率明显提高.图12指出了在具有纹理结构LED芯片的N种出光模式,由于纹理边缘的存在,使许多本来大于临界角的光可通过边缘部位的反射或折射透射出器件表面.显然,表面处纹理结构的存在,在出光机理上等同于大幅度增加了窗口层的厚度.窗口层的厚度越薄,纹理腐蚀得越深,则出光率的增加将越明显.测量指出,对于窗口层厚度为20μm的器件,出光效率可增长30%.当窗口层厚度减至10μm时,出光效率将有60%的改进.对于585-625nm波长的LED器件,制作纹理结构后,发光效率可达30lm/w,其值已接近透明衬底器件的水平.

(4)倒装芯片技术

通常兰绿光及白光LED的结构如图13所示.通过MOCVD技术在兰宝石衬底上生长GaN基LED结构层,由P/N结发光区发出的光透过上面的P型区射出.由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层.P区引线通过该层金属薄膜引出.为获得好的电流扩展,Ni-Au金属电极层就不能太薄.为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素.但无论在什么情况下,金属薄膜的存在,总会使透光性能变差.此外,引线焊点的存在也使器件的出光效率受到影响.

采用GaN LED倒装芯片的结构可以从根本上消除上面的问题,如图14所示.由于芯片倒装于

Si基垫上,LED发出的光直接透过兰宝石射出,不存在上述的Ni-Au金属膜与引线电极,因此出射的光没有损失,加上下面P-GaN层上蒸镀有Ag反射膜,进一步增强了出射光的强度.图15指出了兰绿光LED的量子效率随峰值波长的变化.实验指出,在450~530nm的峰值波长区域,倒装功率型LED器件的量子效率要比普通型器件高出1.6倍. 3、LED散热机制的分析

正如上述,对于一个常规的LED器件,90%以上的输入功率将转换成热.为使器件能维持一个合适的温度,正常工作,这些热量必须通过管壳基板等媒介散发到周围环境中去.

通常将二个节点间单位热功率输运所产生的温度差定义为该二个节点间的热阻,其数学表达式为:

Rθ=ΔT/PD (9)

其中Rθ为节点1与2之间的热阻,ΔT为节点1与2之间的温差,PD为二点间的热功率流.热阻Rθ表示了二点间的热散失能力,Rθ越大,散热能力越差;反之Rθ越小,散热能力越强.当电功率V=VF?IF施加到LED上后,在器件的P-N结处将产生大量的热,致使芯片温度迅速升高,由于器件良好的散热特性,大部分热量将通过银浆、管壳、散热基板,PCB散发到周围环境中去,从而抑制了器件芯片的升温.

类同于电学中的电阻特性,热阻也存在着相同的运算法则,当n个LED安装于同一块基板上时,其热流图如图17所示.

图中Tj、Tc与TB分别代表了某个LED管的P-N结区,管壳与基板处的温度、RθJ-C、RθC-B、RθB-A分别代表P-N结与管壳、管壳与基板、基板与环境之间的热阻,那么,该LED列阵的总热阻可表示为:

RθJ-A= RθJ-C + RθC-B +RθB-A (10)

其中,1/ΣRθJ-C=Σ(1/ RθJ-C),1/ΣRθC-B=Σ(1/ RθC-B),上式满足的基本条件是阵列中所有LED具有完全相同的参数.

热阻Rθ是LED的一个重要参量,当我们知道了某一器件的热阻的Rθ数值,那么根据式(9),即可求得LED的结温: Tj=TA+PDRθJ-A (11)

其中Tj为器件的P-N结温,TA为环境温度,PD=I?V为器件的耗散功率,RθJ-A为器件P-N结与环境之间的热阻.

显然,LED的热阻将严重影响器件的使用条件与性能,图18指出了不同热阻值的器件的最大正向电流与环境温度的关系,由图可见,当热阻较小时,光通量几乎与正向电流成正比例增加,当热阻较大时,由于P-N结温的上升,当正向电流加大到某值时,光通量将趋于饱和,并随之逐渐下降.对于一个LED管,设法降低P-N结与采用环境之间的热阻是提高器件散热能力的根本途径.由于环氧胶是低热导材料,因此P-N结处产生的热量很难通过透明环氧向上散失到环境中去,大部分热量通过衬底、银浆、管壳、环氧粘接层、PCB与热沉向下发散.显然,相关材料的导热能力将直接影响器件的热散失效率.表9与表10指出了若干常用衬底与热沉材料的导热系数值,银浆与环氧的数据未在表中列出.他们的导热系数值分别为2.7与0.2~0.8(w/mk).实验指出,对于一个普通型(Φ5)的LED,从P-N结区环境温度的总热阻在300~600?C/w之间;对于一个具有良好结构的功率型LED器件,其总热阻约为15~30?C/w.巨大的热阻差异表明普通型器件只能在很小的输入功率条件下,才能正常地工作,而功率型器件的耗散功率可大到瓦级甚至更高. 四、减小LED温升效应的对策

LED的输入功率是器件热效应的唯一来源,能量的一部分变成了辐射光能,其余部分最终均变成了热,从而抬升了器件的温度.显然,减小LED温升效应的主要方法,一是设法提高器件的电光转换效率(又称外量子效率),使尽可能多的输入功率转变成光能,另一个重要的途径是设法提高器件的热散失能力,使结温产生的热,通过各种途径散发到周围环境中去.

1、LED器件的量子效率

所谓LED器件的量子效率,即是器件的电能转换成光能的能力,通常可将这种电光转换能力定义为外量子效率ηex,它是器件的注入效率ηJ、内量子效率ηi、电子输运效率ηf和出光效率ηo的总和.

ηex=ηJ?ηi?ηf?ηo (6)

对于InGaAlP与InGaN LED器件中,由于P-N结二边的禁带宽度Eg与掺杂浓度均有一个较大差异,通常ηJ 1;由于器件发光区等结构,一切外延生长形成,发光区的P-N结为突变结,电子输运效率也接近于1.此外,鉴于当前InGaAlP与InGaN的器件结构与生长工艺十分成熟,实践证明,现代技术已足够使内量子效率提高到接近100%的水平.因此,LED器件的外量子效率主要取决于出光效率ηo,如将管芯看作是一个吸收系数为α,体积为v,被面积为Ai的N个面所包围的光学腔,那么该管芯的出光效率可表示为:? ηN=ΣAiTi /〔Σ(1-Ri)Ai+4αv〕 (7)

这里,Ti与Ri分别是Ai的透过率与反射率.对于一个实际的LED管芯,计算表明,芯片表面很小的透过率是LED器件出光效率变得很小的主要原因.其起因是由于芯片表面二侧物质所存在的较大的折射率差异,如图8所示,当芯片内的光沿方面1射向表面并沿方向2射入空气,根据折射定律:

n1Sinθ1= n2Sinθ2 (8)

通常芯片材料的折射率n1≈3.6,空气的折射率n2=1.可算得界面处发生全反射(θ2=90?)的临界角θ1=θ0=16.2?,也就是说,从芯片内部射向表面的光束,只有4%可以射出表面,其余的光能大部分反射回芯片材料内部而被(衬底)吸收. 2、提高LED出光效率的几个途径 (1)透明衬底技术

InGaAlP LED通常是在GaAs衬底上外延生长InGaAlP发光区GaP窗口区制备而成.与InGaAlP相比,GaAs材料具有小得多的禁带宽度,因此,当短波长的光从发光区与窗口表面射入GaAs衬底时,将被悉数吸收,成为器件出光效率不高的主要原因.在衬底与限制层之间生长一个布喇格反射区,能将垂直射向衬底的光反射回发光区或窗口,部分改善了器件的出光特性.一个更为有效的方法是先去除GaAs衬底,代之于全透明的GaP晶体.由于芯片内除去了衬底吸收区,使量子效率从4%提升到了25-30%.三年前,为进一步减小电极区的吸收,有人将这种透明衬底型的InGaAlP器件制作成截角倒锥体的外形,使量子效率有了更大的提高,如图9所示.显然,这种截角倒锥体形状的器件使透光面积增得更大,在红光区,这类器件的外量子效率可超过50%.

图10指出了各类器件的光通量与正向电流的关系,明显表明了三类器件光通量的差异.对于吸收衬底的器件,由于量子效率很低,极大部分的输入能量变成了热,在很小的正向电流下,器件的结温就升得很高,使光通量迅速下降.透明衬底的LED器件,由于相当一部分输入电能变成了光能,相对地减少了升温效应,使器件可在大得多的电流状态下工作. (2)金属膜反射技术

如果说透明衬底工艺首先起源于美国的HP、Lumileds等公司,那么金属膜反射法主要被日本、台湾等地的一些公司进行了大量的研究与发展.这种工艺不但回避了透明衬底专利,而且,更利于规模生产.其效果可以说与透明衬底法具有异曲同工之妙.该工艺通常谓之MB工艺,其基本要点如图11所示.首先去除GaAs衬底,然后在其表面与Si基底表面同时蒸镀Al质金属膜,然后在一定的温度与压力下熔接在一起.如此,从发光层照射到基板的光线被Al质金属膜层反射至芯片表面,从而使器件的发光效率提高2.5倍以上.实验证明,MB型红色LED,当电流为400mA与800mA时,光通量可分别达到37lm与74lm.该类器件已在日本三肯电气、台湾国联、全新等公司进入小批量生产.与传统器件相比,光效得到了大幅度提高.除MB结构的器件外,台湾国联还开发了一种谓之GB型的高亮度InGaAlP LED的新一代器件.所谓GB是英文Giga Bright的缩写.该工艺是采用