分享五大波谱解析步骤简述一紫外光谱解析UV应用时顾及吸收带 下载本文

内容发布更新时间 : 2025/1/23 13:41:41星期一 下面是文章的全部内容请认真阅读。

分享:五大波谱解析步骤简述

(一) 紫外光谱

? 解析UV应用时顾及吸收带的位置,强度和形状三个方面。从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。可粗略归纳为以下几点:

① 如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环

烃或它们的简单衍生物。

② 如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸

收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。

③ 如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常

显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。

④ 如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。

⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度

吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。

(二)红外光谱

1. 解析红外光谱的三要素(位置、强度和峰形)

在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的

存在

2 .确定官能团的方法

对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲

振动。

例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和

720cm-1为其弯曲振动。

例3. 酯基:νC=O为1750~1725cm-1,νC-O在1300~1050cm-1有两个

吸收谱带。

l3.3 红外光谱解析的顺序

(1)根据确定的分子,计算不饱和度,预测可能的官能团。

(2)首先观察红外光谱的官能团区,找出该化合物可能存在的官能团。

(3)查看红外光谱的指纹区,找出官能团的相关吸收峰,最后才确定该化合

物存在某官能团。

(4)判断是否芳香族化合物,若为芳香化合物,找出苯的取代位置。

(5)根据红外光谱指纹区的吸收峰与已知化合物的红外光谱或标准图谱对

照,确定是否为已知化合物。

(三)核磁共振氢谱

核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析

方面1H—NMR的重要性仍强于13C—NMR。

解析图谱的步骤

1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析

时要引起注意,最好重新测试图谱。

2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C

satellite peaks)

(1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂

质峰与样品峰之间没有简单整数比的关系,容易区别。

(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ

值约为7.27 ppm处。

(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称

的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对

氢的谱图造成干扰。

3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子

数目。

4.先解析图中CH3O、CH3N、 、CH3C=O、CH3C=C、CH3-C等孤立的

甲基质子信号,然后再解析偶合的甲基质子信号。

5.解析羧基、醛基、分子内氢键等低磁场的质子信号。

6.解析芳香核上的质子信号。

7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

构中所连活泼氢官能团。

8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。

9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现

AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。

10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配

合解析结构。

11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。

12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归

属信号。

(四)核磁共振碳谱(13C—NMR)

解析图谱的步骤

1.鉴别谱图中的非真实信号峰

(1)溶剂峰:虽然碳谱不受溶剂中氢的干扰,但为兼顾氢谱的测定及磁场需

要,仍常采用氘代试剂作为溶剂,氘代试剂中的碳原子均有相应的峰。

(2)杂质峰:杂质含量相对于样品少得多,其峰面积极小,与样品化合物中

的碳呈现的峰不成比例。