2020高考物理大一轮复习微专题05圆周运动中的临界问题学案新人教版 下载本文

内容发布更新时间 : 2025/1/8 16:59:10星期一 下面是文章的全部内容请认真阅读。

2019年

【2019最新】精选高考物理大一轮复习微专题05圆周运动中的临界

问题学案新人教版

水平面内的临界问题

水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题.

(1)与摩擦力有关的临界极值问题

物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有Fm=,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.

(2)与弹力有关的临界极值问题

压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等.

(2014·新课标全国卷Ⅰ)(多选)如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为 2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )

A.b一定比a先开始滑动 B.a、b所受的摩擦力始终相等 C.ω= 是b开始滑动的临界角速度 D.当ω= 时,a所受摩擦力的大小为kmg

解析:选AC 木块a、b的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力fmax=kmg相同.它们所需的向心力由F向=mω2r知Fa<Fb,所

2019年

以b一定比a先开始滑动,A项正确;a、b一起绕转轴缓慢地转动时,f=mω2r,r不同,所受的摩擦力不同,B项错;b开始滑动时有kmg=mω2·2l,其临界角速度为ωb= ,选项C正确;当ω= 时,a所受摩擦力大小为f=mω2r=kmg,选项D错误.

解决此类问题的一般思路

首先要考虑达到临界条件时物体所处的状态,其次分析该状态下物体的受力特点,最后结合圆周运动知识,列出相应的动力学方程综合分析.

(2018·安徽六安模拟)(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )

A.当ω> 时,A、B相对于转盘会滑动 B.当ω> 时,绳子一定有弹力

C.ω在 <ω< 范围内增大时,B所受摩擦力变大 D.ω在0<ω< 范围内增大时,A所受摩擦力一直变大

解析:选ABD 当AB所受静摩擦力均达到最大值时,A、B相对转盘将会滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω= ,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=mω2·2L,解得:ω= ,B项正确;当<ω< 时,随角速度的增大,绳子拉力不断增大,B所受静摩擦力一直保持最大静摩擦力不变,C项错误;0<ω≤ 时,A所受摩擦力提供向心力,即Ff=mω2L,静摩擦力随角速度增大而增大,当 <ω< 时,以AB整体为研究对象,FfA+Kmg=mω2L+mω2·2L,可知A受静摩擦力随角速度的增大而增大,D项正确.

1.如图,一水平圆盘绕竖直中心轴以角速度ω做匀速圆周运动,紧贴在一起的M、N两物体(可视为质点)随圆盘做圆周运动,N恰好不下滑,M恰好不滑动,两物体与转轴距离为r,已知M与N间的动摩擦因数为μ1,M与圆盘面间的动摩擦因

2019年

数为μ2,最大静摩擦力等于滑动摩擦力.μ1与μ2应满足的关系式为( )

A.μ1+μ2=1 B.=1 C.μ1μ2=1

D.=1

解析:选C 以M、N整体作为研究对象,则受力如图1所示,静摩擦力提供向心力,有Ff=(mN+mM)ω2r,且Ff=μ2(mN+mM)g,以N为研究对象,受力分析如图2所示,M对N的弹力FN提供向心力,有FN=mNω2r,且Ff′=μ1FN=mNg,联立各式得μ1μ2=1,故C正确.

图1 图2

2.(2018·四川资阳一诊)(多选)如图所示,水平转台上有一个质量为m的物块,用长为l的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ=,最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,角速度为ω,重力加速度为g,则( )

A.当ω=时,细绳的拉力为0

B.当ω=时,物块与转台间的摩擦力为0 C.当ω=时,细绳的拉力大小为mg D.当ω=时,细绳的拉力大小为mg

解析:选AC 当转台的角速度比较小时,物块只受重力、支持力和摩擦力,当细绳恰好要产生拉力时μmg=mωlsin 30°,解得ω1= ,随角速度的增大,细绳上的拉力增大,当物块恰好要离开转台时,物块受到重力和细绳的拉力的作用,mgtan 30°=mωlsin 30°,解得ω2=,由于ω1< <ω2,所以当ω= 时,物块与转台间的摩擦力不为零,故B错误;由于 <w1,所以当ω= 时,细绳的拉力为零,故A正确;由于ω1< <ω2,由牛顿第二定律得f+Fsin 30°=m2lsin 30°,因为压力小于mg,所以f<mg,解得F>mg,故D错误;当ω= >ω2时,物块已经离开转台,细绳的拉力与重力的合力提供向心力,则mgtan α=m2lsin α,解得cos α=,故F==mg,故C正确.

竖直面内的临界问题