2018年中考压轴题汇编《因动点产生的平行四边形问题》含答案 下载本文

内容发布更新时间 : 2025/1/8 2:06:56星期一 下面是文章的全部内容请认真阅读。

1.4 因动点产生的平行四边形问题

例1 2017年成都市中考第28题

如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.

(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示); (2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为

5

,求a的值; 4

(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.

图1 备用图

例2 2017年陕西省中考第24题

如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.

(1)求抛物线C的表达式; (2)求点M的坐标;

(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?

图1

例3 2018年上海市松江区中考模拟第24题

如图1,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点. (1)求抛物线的解析式; (2)求tan∠ABO的值;

(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.

图1