内容发布更新时间 : 2025/1/22 12:53:11星期一 下面是文章的全部内容请认真阅读。
(2)设AB?2
QAD?PB?2,BE?2
QPA?A,E为AD中点
?PE?1 QPE2?BE2?P
?PE?B.
以E 为坐标原点,分别以EA,EB,EP 所在直线为x,y,z 轴建立如图所示的空间直角坐标系, 相关各点的坐标为A?1,0,0?,B0,3,0 ,P?0,0,1?,C?2,3,0
??uuuruuuruuur?AB??1,3,0,AP???1,0,1?,BP?0,??????uuur3,1?,BC???2,0,0?.
ur设PAB的法向量为n1??x2,y2,z2?
uuruuur?n2?BP?0??3y2?z2?0??Q?uu得? ruuurn?BC?0??2x2?0??2?ur令y2??1得x2?0,z2??3,即n1?0,?1,?3
??uruurn?n27?ur1u2 ur??7n1?n2设二面角A?PB?C的平面为?,由图可知,?为钝角, 则cos???27. 719. 【解析】
(1)根据散点图判断,y?c?d适宜作为扫码支付的人数y关于活动推出天数x的回归方程类型;
x(2)Qy?c?d,两边同时取常用对数得:1gy?1gc?d?1gc?1gd?x;
xx??设1gy?v,?v?1gc?1gd?x
Qx?4,v?1.55,?Xi?172i?140,
μ??1gd?xv?7xvii2ii?177?xi?1?7x2?50.12?7?4?1.547??0.25,
140?7?4228μ?0.54, 把样本中心点?4,1.54?代入v?1gc?1gd?x,得: 1gd$?0.54?0.25x,?1gyμ?0.54?0.25x, ?vxxy?100.54?0.25x?100.54?100.54??3.47?100.54?; ?y关于x的回归方程式:$把x?8代入上式: ?$y?100.54?0.25?8?102.54?102?100.54?347;
活动推出第8天使用扫码支付的人次为3470; (3)记一名乘客乘车支付的费用为Z, 则Z的取值可能为:2,1.8,1.6,1.4;
P?Z?2??0.1;
1P?Z?1.8??0.3??0.15;
21P?Z?1.6?? 0.6?0.3??0.7;
31P?Z?1.4??0.3??0.05
6所以,一名乘客一次乘车的平均费用为:
2?0.1?1.8?0.15?1.6 ?0.7?1.4?0.05?1.66(元)
由题意可知:1.66?1?12?n? 0.66?12?n?80?0
n?20,所以,n取7; 3估计这批车大概需要7年才能开始盈利. 20. 【解析】
(1)由已知,l的方程:y?kx?p,设A?x1,y1?,B?x2,y2?, 2?2x?2py??22由?,得:x?2pkx?p?0?*? ?y?kx?p??222xx2p221x1x2??p,y1y2?, ?2p2p4uuuruuurp23p22??, OA?OB?x1x2?y1y2??p?443p23??,p?1, 由已知得:?44?抛物线方程C:x2?2y;
(2)由第(1)题知,p?1,C:x?2y,l:y?kx?方程?*?即:x?2kx?1?0,
221, 2x1?x2?2k,x1x2??1
设AB的中点D?x0,y0?, 则:x0?111?x1?x2??k,y0?kx0??k2?, 222所以AB的中垂线MN的方程:
1?113?y??k2?????x?k?,即x?y?k2??0
2?kk2?2将MN的方程与C:x?2y联立得:x?22x?2k2?3?0, k设M?x3,y3?,N?x4,y4?,则R??x3?x4y3?y4?,? 22???x3?x41y?y41?x?x?313??,3???34??k2??2?k2? 2k2k?2?2k21?0的距离d=2k2?1?22k 2k?1R点到AB:kx?y?AB=k2?1x1?x2?k2?1k2??x1?x2?2?4x1x2?k2?14k2?4?2?1?k2?
1?2k22dk2?1k?1所以 =?22AB2k2?1?k?k2?12?由已知得:,得k??1. 2k2221. 【解析】 (1)【解法一】
2ax2?2ax?xx?2ax?2a?1?1?,x??0,??? f(x)??2ax?1?1?x1?x1?x设h(x)?2ax2a?1
①a?0时,h?x??0,?f(x)在?0,???上单调递减,
f(x)?f(0)?0,不合题意,舍;
②当a?0时,
(i)若2a?1?0,即a?合题意;
(ii)若2a?1?0,即0?a?1时,当h?x??0,?f(x)在?0,???上单调递增,f(x)?f(0)?0,符21?1?2a?时,当x??0,?时,h?x??0,f(x)单调递减:当
2a2???1?2a?x??,???时,h?x??0,f(x)单调递增;
?2a??1?2a??f???f(0)?0,不合题意,舍;
2a??综上:a?1; 2【解法二】
若a?0,而f(1)?1n2?a?1?0,不合题意,故a?0;
易知: f(0)?0,f'(x)?设(x)?1?2ax?1,x??0,???,f'(0)?0 1?x11?2ax?1,h'(x)???2a,h'(0)?2a?1 21?x?1?x?1时, Qh'(x)在?0,???上单调递增, 2若2a?1?0,即a??h'(x)?h'(0)?2a?1?0,Qh'(x)在?0,???上单调递增, ?h'(x)?h'(0)?0,符合题意;
若2a?1?0,即0?a?1时, Qh'(x)在?0,???上是单调递增函数, 21,当x??0,x0?时, h'(x)?0, 2a令h'(x)?0,记x0?1??h'(x)在?0,x0?上是单调递减函数,
?h'(x)?h'(0)?0,?f(x)在?0,x0?上是单调递减函数, ?f(x)?f(0)?0,不合题意:
综上: a?1; 2 (2)【解法一】
2ax2+2ax+11, ?2ax=g?x??1n?1?x??ax,g'?x??x?11?x2设??x??2ax?2ax?1,
2若a?0,??x??1?0,?g'?x??0,
?g?x?在??1,???上单调递增,不合题意:当a?0时, Q???1????0??1, ???x??0在??1,???上只有一个根,不合题意:
当a?0时, Q???1????0??1,要使方程??x??2ax?2ax?1?0有两个实根x1,x2,
2