材料科学基础重点知识 下载本文

内容发布更新时间 : 2024/6/16 20:19:04星期一 下面是文章的全部内容请认真阅读。

第5章 纯金属的凝固

1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。

结晶过程:形核和长大过程交替重叠在一起进行

2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学看,没有过冷度结晶就没有趋动力。根据

Rk?1?T可知当过冷度?T=0时临界晶核半径R*为无穷大,临界形

核功(?G?1?T2)也为无穷大,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间

3、均匀形核和非均匀形核

均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。

非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。 临界晶核半径:ΔG达到最大值时的晶核半径r*=-2γ/ΔGv 物理意义:

r0,晶核不能自动形成。

r>rc 时, ΔGv占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。

临界形核功:ΔGv*=16πγ3/3ΔGv3 形核率:在单位时间单位体积母相中形成的晶核数目。受形核功因子和原子扩散机率因子控制。 4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。在凝固结晶前沿的过冷度随离界面距离的增加而减小。纯金属结晶平面生长。

负的温度梯度:过冷度随离界面距离的增加而增加。纯金属结晶树枝状生长。

5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。

粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。

6、凝固理论的应用:细化晶粒、定向凝固技术、单晶体的制备、非晶态合晶的制备

7、晶粒细化的方法和原理

晶粒度:实际金属结晶后,获得由大量晶粒组成的多晶体的晶粒的大小

细晶强化:通过细化晶粒来提高材料强度的方法

细化晶粒的方法:增加过冷度:提高冷却速度和过冷能力;变质处理:往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法;振动与搅拌:使正在生长的枝晶破碎,提供能量促使自发晶核的形成。

机理:晶粒越细小,位错塞集群中位错个数n越小,根据τ=nτ0应力集中越小,故材料的强度越高。

第6章 固体中的扩散

1、扩散固体中原子或分子的迁移,是固体中物质迁移的唯一方式。 迁移能而且还需要空位形成能,因此导致间隙原子扩散速率比置换

本质:原子每个平衡位置都对应一个势能谷,在相邻平衡位置之间都隔着一个势垒,由于原子的热振动存在能量起伏,总会有部分原子具有足够高的能量,能够跨越势垒,从原来的平衡位置跃迁到相邻的平衡位置上去。故固态扩散是原子热激活的过程。 2、固态金属扩散条件:①温度要足够高,温度越高原子热振动越激烈原子被激活而进行迁移的几率越大②时间要足够长,只有经过相当长的时间才能造成物质的宏观迁移③扩散原子要固溶,扩散原子能够溶入基体晶格形成固溶体才能进行固态扩散④扩散要有驱动力,没有动力扩散无法进行,扩散的驱动力为化学位梯度。 3、扩散的分类:1按是否出现新相:原子扩散、反应扩散 2按浓度的均匀程度分:有浓度差的空间扩散叫互扩散;无浓度差的扩散叫自扩散; 3按扩散方向分:由高浓度向低浓度扩散叫顺扩散即下坡扩散;由低浓度向高浓度扩散叫逆扩散即上坡扩散;4按原子的扩散路径分:在晶粒内部的扩散称体扩散;在表面进行的扩散称为表面扩散;沿晶界进行的扩散称为晶界扩散。 4、扩散第一定律表达式: J??DdCdx J为扩散流量;D扩散系数;

dCdx为浓度梯度。扩散系数D?D0exp??QRT? D0为扩散常数,Q为扩散激活能,R为气体常数,T为热力学温度。扩散系数D与温度呈指数关系,温度升高,扩散系数急剧增大。; 扩散的驱动力为化学位梯度,阻力为扩散激活能 5、扩散机制:间隙扩散机制、空位扩散机制、换位扩散机制 间隙原子扩散比置换原子扩散容易的原因:间隙固溶体中原子扩散仅涉及到原子迁移能,而置换固溶体中原子的扩散机制不仅需要固溶体中的原子扩散速率高得多。 柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象。原因:低熔点组元扩散快,高熔点组元扩散慢,正是这种不等量原子交换造成的 6、影响扩散的因素:

1温度:温度是影响扩散的主要因素,随着T的升高,扩散系数D成指数升高

2固溶体类型:间隙固溶体中溶质原子的扩散激活能比置换固溶体的小,扩散速度快 3晶体结构:致密度小易迁移;体心结构的扩散系数大于面心结构的;固溶度不同引起浓度梯度差别;晶体的各向异性; 4晶体缺陷:增加缺陷密度会加速金属原子和置换原子的扩散,对间隙原子则不然

5浓度 6合金元素 相变扩散和反应扩散:通过扩散而产生新相的现象。 第8章 三元相图

1直线法则:二元系统两相平衡共存时,合金成分点与两平衡相的必

须位于一条直线上

2杠杆定律:Wa/Wβ=oβ/oa=cb/ca

3重心定律:当三元合金在一定温度下处于三相平衡时合金的成分点为3个平衡相成分点组成的三角形的质量重心。 蝴蝶形规律:反映两相平衡相对应关系的共轭连线是非固定长度的水平线,随温度下降,它们一方面下移,另一方面绕成分轴转动。 4固态互不溶解三元共晶:

四相平衡共晶平面:三元共晶点E与该温度下3个固态的成分mnp组成的四相平衡平面

WA=oq/Aq*100% WL=Ao/Aq W(A+C)/Wo=Eq/Ef*WL 射分析法、膨胀试验法、电阻试验法。 W(A+B+C)/Wo=qf/Ef*WL 四相平衡 包共晶反应:L+a→β+γ 包晶反应:L+a+β→γ 5根据液相成分变温线投影的温度走向(降温)判别四相平衡反应类型:三根液相成分变温线温度走向均指向中心属共晶反应;两根液相成分变温线的温度走向指向中心,一根背离中心属包共晶反应;一根温度走向指向中心,两根背离中心,属包晶反应。 6说出图中各点(M、N、P、E)室温下的显微组织。 M:B+(B+C)+(A+B+C); N:(A+B) +(A+B+C); P:C+(A+B+C); E:(A+B+C)。 b求出E点合金室温下组织组成物的相对量和相组成物的相对量。 E点合金室温下组织组成物的相对量(A+B+C)为100% 相组成物的相对量为: WA=Ea/Aa×100% WB=Eb/Bb×100% WC=Ec/Cc×100% c分析M点合金的结晶过程。先从液相中结晶出B组元,当液相成分为K时,发生二元共晶转变,转变产物为(B+C),当液相成分为E时,发生三元共晶转变,转变产物为(A+B+C)。室温下的显微组织为:B+(B+C)+(A+B+C)。 第7章 1、建立方法:热分析法、金相分析方法、硬度测定方法、X射线衍2、二元相图中有哪些几何规律: 相区接触法则;三相区是一条水平线…;三相区中间是由它们中相同的相组成的两相区;单相区边界线的延长线进入相邻的两相区。

3、匀晶合金相图:两组元在液态、固态均无限互溶的合金状态图。 4、平衡凝固:冷却极为缓慢组元成分充分互相扩散每个阶段都达到平衡。 5、非平衡凝固:合金溶液冷却速度较快,在每一温度下不能保持足

够的扩散时间,凝固过程偏离平衡条件的凝固。 6、固溶体结晶与纯金属结晶的比较 ①相同点:基本过程:形核-长大;热力学条件:⊿T>0;能量条件:能量起伏; 结构条件:结构起伏。② 不同点:合金在一个温度范围内结晶(可能性:相率分析,必要性:成分均匀化。)合金结晶是选分结晶:需成分起伏。 7、一个晶粒内或一个枝晶间化学成分不同的现象,叫枝晶偏析或晶内偏析。各晶粒之间化学成分不均匀的现象叫晶间偏析。消除方法:扩散退火(在固相线以下较高温度经过长时间的保温,使原子扩散充分,使之转变为平衡组织)。 8、两组元在液态时无限互溶,固态时有限固溶或完全不溶,且发生共晶转变,形成共晶组织的二元系相图。 9、由一种液相在恒温下同时结晶出两种固相的反应称为共晶反应。所生成的两种混合物称为共晶体,成分确定。成分位于E点以左,M点以右的合金称为亚共晶合金。成分位于E点以右,N点以左的合金成为过共晶合金。 10、伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或

过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。

离异共晶:两相分离的共晶组织。形成原因:平衡条件下,成分位