锂电池隔膜的性能要求 下载本文

内容发布更新时间 : 2024/9/13 9:56:00星期一 下面是文章的全部内容请认真阅读。

锂离子电池隔膜的性能要求

锂离子电池由正、负极材料、电解液、隔膜以及电池外壳组成。隔膜作为电池的“第三极”,是锂离子电池中的关键内层组件之一。隔膜吸收电解液后,可隔离正、负极,以防止短路,同时允许锂离子的传导。在过度充电或者温度升高时,隔膜通过闭孔来阻隔电流传导,防止爆炸。隔膜性能的优势决定电池的界面结构和内阻,进而影响电池的容量、循环性能,充放电电流密度等关键特性。性能优异的隔膜对提高电池的综合性能起着有重要的作用。 锂离子电池隔膜生产材料目前还是以聚烯烃为首选,聚烯烃材料具有强度高、防火、耐化学试剂、耐酸碱腐蚀性好、生物相容性好、无毒等优点,在众多领域得到了广泛的应用。聚烯烃化合物可以提供良好的机械性能和化学稳定性,具有高温自闭性能,确保锂离子二次电池在日常使用上的安全性。 1 、厚度均匀性

隔膜的厚度均匀性与所有薄膜生产企业要求是一样的,是一个永远追求的重要的质量指标,它直接影响隔膜卷的外观质量以致内在性能,是生产过程严加控制的质量指标之一。锂电池用户对隔膜的分切有其特殊的要求,除了有特殊的隔膜分切机、专业培训的专业分切人员外,与隔膜自身的厚度均匀性关系最为密切。 在自动化程度很高的隔膜生产线上,隔膜厚度都是采用精度很高的在线非接触式测厚仪 及快速反馈控制系统进行自动检测和控制的。隔膜的厚度均匀性包括纵向厚度均匀性和横向厚度均匀性。其中横向厚度均匀性尤为重要。一般均要求控制在+1微米以内。“南通天丰”公司厚度现已控制在+0.5微米以内。 2、力学性能

隔膜的力学性能是影响其应用的一个重要因素,如果隔膜破裂,就会发生短路,降低成品率,因此要求隔膜在电池组装和充放电结构使用过程中,需要自身具有一定的机械强度。隔膜的机械强度可用抗穿刺强度和拉伸强度来衡量。

拉伸强度,隔膜的拉伸强度与制膜的工艺相关联。采用单轴拉伸,膜在拉伸方向上与垂直方向强度不同;而采用双轴拉伸时,隔膜在两个方向上一致性会相近。一般拉伸强度主要是指纵向强度要达到100MP以上,横向强度不能太大,过大会导致横向收缩率增大,这种收缩会加大锂电池厂家正、负极接触的几率。

抗穿刺强度,抗穿刺强度是指施加在给定针形物上用来戳穿隔膜样本的质量,用它来表示隔膜在装配过程中发生短路的趋势。因隔膜是被夹在凹凸不平的正、负极片间,需要承受很大的压力。为了防止短路,所以隔膜必须具备一定的抗穿刺强度。抗穿刺强度值一般在300-500g。

3、透过性能

透过性能可用在一定时间和压力下,通过隔膜气体的量的多少来表征,主要反映了锂离子透过隔膜的通畅性。隔膜透过性的大小是隔膜孔隙率、孔径、孔的形状及孔曲折度等隔膜内部孔结构综合因素影响的结果。

作为锂电池隔膜材料,本身具有微孔结构,微孔在整个隔膜材料中的分布应当均匀。孔径一般在0.03-0.12um。孔径太小增加电阻,孔径太大易使正负极接触或被枝晶刺穿短路。

隔膜厂家现在基本以透气度、孔隙度指标来衡量透气性。透气率是指特定的空气在特定的压力下通过特定面积隔膜所需要的时间,用Gurley值来表示。根据隔膜厚度,一般在300-700s/100ml。孔隙率是单体膜的体积中孔的体积百分率,它与原料树脂及膜的密度有关。现有锂离子电池隔膜的孔隙率在40%-50%之间。 4、理化性能

润湿性和润湿速度:较好的润湿性有利于提高隔膜与电解液的亲和性,扩大隔膜与电解液的接触面,从而增加离子导电性,提高电池的充放电性能和容量。隔膜对电解液的润湿性可通过测定其吸液率和持液率来衡量。

化学稳定性:隔膜在电解液中应当保持长久的稳定性,不与电解液和电极物质反应。其化学稳定性是通过测定耐电解液腐蚀能力和胀缩率来评价的。

热稳定性:电池在充放电过程中会释放热量,尤其在短路或过充电的时候,会有大量热量放出。因此,当温度升高的时候,隔膜应当保持原有的完整性和一定的力学性能,发挥隔离正、负极、防止短路的作用。

安全保护性能:随着锂电池应用范围的逐渐扩大,尤其是动力电池领域,锂离子电池的安全性成为锂电池厂家的最为重视的环节。作为锂电池最为关键的核心材料,对隔膜也提出了更高的要求。

目前锂电池用隔膜一般都能够提供一个附加的功能,就是热关闭。这一特性可以为锂离子电池提供一个额外的安全保护。该功能主要参数为闭孔温度和破膜温度。

闭孔温度是微孔闭合时的温度,即为闭合温度。指电池内部发生放热反应自热、过充或者电池外部短路时,这些情况都会产生大量的热量。由于聚烯烃材料的热塑性,当温度接近聚合物熔点时,微孔闭合形成热关闭,从而阻断离子的继续传输而形成断路,起到保护电池的作用。一般PE为130-140℃,PP为150℃。

破膜温度是指电池内部自热,外部短路使电池内部温度升高,超过闭合温度后微孔闭塞阻断电流通过,热熔性能温度进一步上升,造成隔膜破裂、电池短路。破裂时的温度即为破膜温度。

因此,锂电池厂家都希望隔膜有较低的闭孔温度和较高的破裂温度。

闭孔温度和破膜温度均与隔膜材料的种类有很大关系。任何单层的隔膜将难以满足锂离子电池对隔膜的安全性的要求。为了满足锂电池厂家的这种要求,南通天丰开发出了PE、PP多层隔膜。融合了PE的低温闭合和PP的高温破膜温度两种特性。

在锂电池的结构中,隔膜是关键的内层组件之一。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。 隔膜的主要作用是使电池的正、负极分隔开来,防止两极接触而短路,此外还具有能使电解质离子通过的功能。隔膜材质是不导电的,其物理化学性质对电池的性能有很大的影响。电池的种类不同,采用的隔膜也不同。对于锂电池系列,由于电解液为有机溶剂体系,因而需要有耐有机溶剂的隔膜材料,一般采用高强度薄膜化的聚烯烃多孔膜。

锂电池隔膜的要求:(1)具有电子绝缘性,保证正负极的机械隔离;(2)有一定的孔径和孔隙率,保证低的电阻和高的离子电导率,对锂离子有很好的透过性;(3)由于电解质的溶剂为强极性的有机化合物,隔膜必须耐电解液腐蚀,有足够的化学和电化学稳定性;(4)对电解液的浸润性好并具有足够的吸液保湿能力;(5)具有足够的力学性能,包括穿刺强度、拉伸强度等,但厚度尽可能小;(5)空间稳定性和平整性好;(6)热稳定性和自动关断保护性能好。动力电池对隔膜的要求更高,通常采用复合膜。

一般分为两种生产工艺:1、干法,以美国celgard和日本ube为代表,主要材料是PP的。

2、湿法,以日本东然,旭化成为主,主要材料是PE

理解隔膜的技术指标含义对于判断隔膜产品的性能优劣具有重要意义,我们接下来试图将隔膜的主要性能参数指标进行简单的介绍,以助于直观地理解隔膜产品的优劣。 1 直观地来看,在同样大小的电池中,隔膜厚度越厚,能卷绕的层数就越少,相应容量也就会降低;但是另一方面,较厚的产品,抵抗穿刺的性能会稍高,安全性会高一些,同时同样孔隙率的

情况下,越厚的产品,其透气率会稍差,使得电池的内阻会高一点。所以在考虑电池隔膜厚度的时候需要在容量指标和安全性之间寻找一个平衡。 对于手机、笔记本电脑、电子相框等消耗型锂离子电池,25 微米的隔膜逐渐成为标准。然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,例如20 微米、18 微米、16 微米、甚至更薄的隔膜开始大范围的应用。对于动力电池来说,由于装配过程的机械要求,往往需要更厚的隔膜,同时厚一些的隔膜往往同时意味着更好的安全性。 总体来讲隔膜的厚度直接影响电池的安全性、容量和内阻等指标,目前常用的隔膜厚度一般为16~40um。 2 锂电池隔膜上面要求有微孔,便于锂离子通过。从现有的工艺水平来看,湿法隔膜的孔径在0.01~0.1um,干法隔膜的孔径在0.1~0.3um,孔径的大小决定隔膜的透气率,但是过大的孔径有可能导致隔膜穿孔形成电池微短路。总体来看,隔膜的孔径直接影响电池的内阻和短路率。 3 从定义来看,透气率又叫Gurley 数,反映隔膜的透过能力。即一定体积的气体,在一定压力条件下通过1平方英寸面积的隔膜所需要的时间。常用的气体体积量一般为50ml或者100ml。透气率从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。需要指出的是,对于不同类型和厚度的隔膜,该数字的直接比较没有任何意义。因为锂离子电池中的内阻和离子传导有关,而透气率和气体传导有关,两种机理是不一样的。目前市场上产品的典型指标在200~800s/100ml左右。 4 直观来看,为了保证电池的内阻不是太大,要求隔膜是能够被电池所用电解液完全浸润,但是目前这方面没有一个公认的检测标准。当前市场上通用的衡量标准是:取一定面积的隔膜完全浸泡在电解液中,看隔膜吸收电解液的重量(常用单位是g/m2),同样厚度的隔膜,吸收的重量越大,浸润效果越好。浸润度一方面与隔膜材料本身有关,还与隔膜的表面及内部微观结构密切相关,另一方面与电解液的配方也有很大关系。 5 电池生产和使用中都有可能产生外力穿刺。电池生产方面,受限于电极表面涂覆不够平整、电极边缘有毛刺等情况,以及装配过程中工艺水平有限等因素,有可能对隔膜产生穿刺作用;另一方面,电池使用过程中,电池内部会逐渐形成枝状晶体,也有可能刺破隔膜,造成内部微短路。在微结构一定的情况下,相对来说穿刺强度高的,其装配不良率低。但是单纯追求高穿刺强度,也必然导致隔膜的其他性能下降。一般对产品都会做穿刺实验验证隔膜的可靠性,对于湿法工艺一般要求穿刺强度大于300g/20um。 6 一方面,隔膜需要在电池使用的温度范围内(-20~60℃)保持尺寸稳定;另一方面,在电池生产过程中由于电解液对水份非常敏感,大多数厂家会在注液前进行85℃左右的烘烤,要求在这个温度下隔膜的尺寸也应该稳定,否则会造成电池在烘烤时,隔膜收缩过大,极片外露造成短路。以湿法隔膜为例,一般要求90℃条件下加热2小时条件下,纵向<5.0%,横向<3.0%。 7 闭孔温度是指达到这一温度后,隔膜能够在热作用下关闭孔隙,从而在电池内部形成断路,防止电池内部温度由于内部电流过大进一步上升,造成安全隐患。这一特性可以为锂离子电池提供一个额外的安全保护。需要指出的是:PE 128~135PP 150~160同时,不同的微结构对热关闭温度有一定的影响。 破膜温度是造成电池破坏的极限温度,在此温度下,隔膜完全融化收缩,电极内部短路产生高温直至电池解体或爆炸。破膜温度—闭孔温度反映了隔膜的温度安全区间,以单层PE膜为例,闭孔温度在128~135℃,破膜温度一般大于145℃,温度保护区间为145-135=10℃。 8 孔隙率是材料中孔隙体积占总体积的比例,反映隔膜内部微孔体积占比多少。孔隙率的大小影响电池的内阻,但不同种隔膜之间的空隙率的绝对值无法直接比较。孔隙率较大便于锂离子通过,但是孔隙率过大则影响机械强度和闭孔性能。目前商用隔膜孔隙率一般在40%~60%之间。