material studio使用经验总结模板 下载本文

内容发布更新时间 : 2024/5/2 7:20:18星期一 下面是文章的全部内容请认真阅读。

关于K点

1. 应当使用多少个k网格? 很难一般地回答,只能给出一般建议。注意:一定要检查k网格,首先用较粗糙的网格计算,接下来用精细的网格计算。通过比较两次的结果,决定选用较粗糙的网格,或是继续进行更精细网格的计算,直到达到收敛。金属体系需要精细的网格,绝缘体使用很少的k点通常就可以。小单胞需要精细格点,大单胞很可能不需要。因此:单位晶胞内原子数很多(比如40-60个)的绝缘体,可能仅需要一个(移动后的)k点。另一方面,面心立方的铝可能需要上万个k点以获得好的DOS。对于孤立原子或分子的超晶胞,仅需要在Gamma点计算。对于表面(层面)的超晶胞计算,仅需要(垂直于表面)z方向上有1个k点。甚至可以增加晶格参数c,这样即使对精细格点,沿z方向上也只产生一个k点(产生k点后,不要忘记再把c改回)。

2. 当体系没有出现时间反演对称操作时,是否加入?

大多数情况下的回答是“是”,只有包含自旋-轨道耦合的自旋极化(磁性)计算除外。这时,时间反演对称性被破坏(+k和-k的本征值可能不同),因此决不能加入时间反演对称性。 3. 是否移动k网格?(只对某些格子类型有效)

“移动”k网格意味着把所有产生的k点增加(x,x,x),把那些位于高对称点(或线)上的k点移动到权重更大的一般点上。通过这种方法(也即众所周知的“特殊k点方法”)可以产生等密度的,k点较少的网格。通常建议移动。只有一点注意:当对半导体的带隙感兴趣时(通常位于Gamma,X,或BZ边界上的其它点),使用移动的网格将不会得到这些高对称性的点,因此得到的带隙和预期结果相比或大或小。这个问题的解决:用移动的网格做SCF循环,但对DOS计算,改用精细的未移动网格。

关于k空间布点的问题,建议参阅以下文献Phys.Rev.B 49,16223 (1994)

如何构建缺陷晶体结构

晶体结构改成P1,然后去掉想抹去的原子就可以了

在ms中如何做空穴

对于金属缺陷,是直接剪切一个原子?

个人经验:就是直接把原子去掉就OK;如果不是正版软件,有可能出现同时去掉其他同位置的原子,如果这种情况,就重新定义,问题就不会出现了.还有,一般考虑孔穴的时候,都要标明哪些原子的迟豫,具体为什么不知道,国外的文献有提到.希望有做空位的一起多讨论.我Q:183876402

PDOS选项

计算DOS时,选择PDOS,可以画出s,p,d轨道的DOS,但无法画出某一个原子的s,p,d图

关于PDOS的Chart中求积分的问题

在用Castep计算出PDOS后,如何在Chart中对曲线局部进行积分?将Chart输出为cav格式,然后在excel中求和?

简单,把数据导出,在Origin里作图,程序里有积分微分卷积功能,在数据分析下面。作图时选取积分范围。

优化结构

算能带一般需要优化结构。如果选择实验的参数,全部固定的话就不需要了

如何做二维电子密度图

MS结果文件夹中*.grd文件内存储的是三维空间各点的电荷密度值,利用这个数据就可以得到二维的电荷密度等值线图,应该有专门的软件能画,不过用matlab编自己编程序也不难,其中关键命令是contourslice,实现在某一平面内绘制等高线

对DOS图的分析

根据DOS的积分曲线可以计算出,对于表面Nb和C原子,大约有16.8%和14.8%的电子态集中在4.0~2.0eV的区域,而对体相原子则分别为6.4%和6.0%

表面吸附

我做H在 ZnO上吸附。刚开始时后我构建的吸附构型忘记 impose symmetry了,Groupname 是 P1。

在第二次计算的时候 我加上了symmetry。

两次计算差别出来了: (1) 首先是 impose symmetry后,supercell中的原子位置由原来的现面跑到了上面,也就是和真空层换了一下位置! 而且吸附原子竟然 超出了supercell的 白色线框!

(2)比较两次计算的 DOS,一模一样;但是两次计算的 Band Structure 却有很大差异!

回答:1)只是显示问题

(2) Band Structure 有很大差异是指那种差异?使用不同对称性计算能带时,默认计算的K点是不同的,所以图像肯定不同。如果你确定是选择计算了同样的K点,能带结构仍然不同,那可能是采用对称后结构变化导致的。

如何计算结构中某一元素的分波态密度

1. 我最近看了关于氧气锌的论文,上面有锌原子的分波态密度图,可是我怎么都没算出来,一直得到氧和锌原子的分波态密度,希望哪位大侠指教

2. 在计算性质选择了计算density of state是,对话框下面有一个口calculate PDOS,把它勾选上,计算成功后,在分析就能看到总态密度和分态密度,随你选择。

3. 按照楼上的指导计算成功后,需要哪个原子的PDOS,就选中哪个原子,然后在analysis里DOS项前打勾,partial项打勾,再view就ok了。

有关能带分析 能带图分析

能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。

记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。通过能带图,能把价带和导带看出来。在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。

DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从DOS图也可以清晰地看出带隙、价带、导带的位置。要理解DOS,需要将能带图和DOS结合起来。分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。否则显示的就是整个体系原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。研究的是体系中所有电子的能量状态。根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。我们经常提到的总能量,就是体系电子的总能量。

这些是我看书的体会,不一定准确,大家多多批评啊!