2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案 下载本文

内容发布更新时间 : 2024/11/14 13:20:29星期一 下面是文章的全部内容请认真阅读。

2013-2014学年第一学期概率论与数理统计学期末考试试卷(A卷)答案 Page 1 of 9

北 京 交 通 大 学

2013~2014学年第一学期概率论与数理统计期末考试试卷(A卷)

参 考 答 案

某些标准正态分布的数值

x ??x? 0.34 0.6631 0.53 0.7019 0.675 0.75 1.16 0.877 1.74 0.9591 1.96 0.975 2.33 0.99 2.58 0.995 其中??x?是标准正态分布的分布函数. 一.(本题满分8分)

某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为0.5、0.65和0.45.如果钥匙最终被找到,求钥匙是在路上被找到的概率. 解:

设B?“钥匙被找到”.

A1?“钥匙掉在宿舍里”,A2?“钥匙掉在教室里”,A3?“钥匙掉在路上”. 由Bayes公式,得

P?A?P?BA??? PAB?

?P?A?P?BA?3333iii?1 ?0.25?0.45?0.208.3

0.4?0.5?0.35?0.65?0.25?0.45二.(本题满分8分)

抛掷3枚均匀的硬币,设事件

A??至多出现一次正面?,B??正面与反面都出现?

判断随机事件A与B是否相互独立(4分)?如果抛掷4枚均匀的硬币,判断上述随机事件A与B是否相互独立(4分)? 解:

第 1 页 共 9 页

2013-2014学年第一学期概率论与数理统计学期末考试试卷(A卷)答案 Page 2 of 9

⑴ 如果抛掷3枚硬币,则样本点总数为23?8.

41633?,P?B???,P?AB??, 82848313所以有 P?AB?????P?A?P?B?,因此此时随机事件A与B是相互独立的.

824 P?A?? ⑵ 如果抛掷4枚硬币,则样本点总数为24?16.

514741?,P?AB???, ,P?B??16168164157所以有 P?AB?????P?A?P?B?,因此此时随机事件A与B不是相互独立的.

4168 P?A??三.(本题满分8分)

设随机变量X的密度函数为

?4?1?x?30?x?1f?x???.

0其它?求:⑴ E?X?(4分);⑵ P?X?E?X??(4分). 解: ⑴ E?X??1?????xf?x?dx??x?4?1?x?dx

301 ?4??x?3x0231?1?1?3x3?x4dx?4???1?????0.2.

45?5?2? ⑵ P?X?E?X???P?X?0.2??10.2?4?1?x?dx

3113214?256?233?0.4096. ?4?1?3x?3x?xdx?4??x?x?x?x??24625??0.20.2??四.(本题满分8分)

某加油站每周补给一次汽油,如果该加油站每周汽油的销售量X(单位:千升)是一随机变量,其密度函数为

4?1?x??1??0?x?100 f?x???20???100??0其它?试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在2%以下? 解:

第 2 页 共 9 页

2013-2014学年第一学期概率论与数理统计学期末考试试卷(A卷)答案 Page 3 of 9

设该加油站每次的储油量为a.则由题意,a应满足0?a?100,而且

P?X?a??0.02.

而 P?X?a?????f?x?dx??aa1001?x?a??f?x?dx??f?x?dx????1??dx??1??.

20100100????100a??10045a??所以,应当有, ?1???0.02.

?100?所以,得 1?aa?50.02,即 1?50.02?, 1001005a?55(千升)因此有 a?100?1?50.02?54.269494.因此可取,即可使一周内断油的概81??率控制在5%以下.

五.(本题满分8分)

设平面区域D是由双曲线y?

1

,?x?0?以及直线y?x,x?2所围,二维随机变量?X,Y?服从x

;⑵ 随机变量Yy?(4分)

区域D上的均匀分布.求:⑴ 二维随机变量?X,Y?的联合密度函数f?x,的边缘密度函数fY?y?(4分). 解:

⑴ 区域D的面积为

1?? A???x??dx?2x2?lnxx?1?2??21?6?ln2,

所以,二维随机变量?X,Y?的联合密度函数为

?1?y???6?ln2??0f?x,1?x?1时, 2???x,?x,y??Dy??D .

⑵ 当

fY?y?????f?x,211?1???y?dx?dx?2?; ??6?ln216?ln2?y??y 当1?x?2时, fY?y???????f?x,11?2?y?. y?dx?dx??6?ln2y6?ln2第 3 页 共 9 页

22013-2014学年第一学期概率论与数理统计学期末考试试卷(A卷)答案 Page 4 of 9

所以,随机变量Y的边际密度函数为

?1?1?1??2??y?1???y?2?6?ln2??1?2?y?1?y?2 . fY?y????6?ln2??0其它?六.(本题满分8分)

设随机变量X与Y满足:va??X,Y??1,再设随机变量U?2X?3Y,rY??4,covrX??2,va?V?3X?2Y,求二维随机变量?U,V?的相关系数?U,V.

解:

var?U??var?2X?3Y??4var?X??9var?Y??12cov?X,Y??4?2?9?4?12?32, var?V??var?3X?2Y??9var?X??4var?Y??12cov?X,Y??9?2?4?4?12?22, cov?U,V??cov?2X?3Y,3X?2Y?

?6var?X??6var?X??4cov?X,Y??9cov?X,Y??6?2?6?4?13?1?23. 所以,二维随机变量?U,V?的相关系数为 ?U,V?cov?U,V?2323. ???0.8668451157var?U?var?V?3222811七.(本题满分8分) 设?X1,?X1?X2?(不X2?是取自正态总体N0,?2中的一个样本.试求随机变量Y???X?X??的分布.

2??1??2必求出Y的密度函数,只需指出Y是哪一种分布,以及分布中的参数即可.) 解:

由于X1~N0,?2,X2~N0,?2,而且X1与X2相互独立,所以 X1?X2~N0,2?2,X1?X2~N0,2?2.

????????vX1?X2,由于 co?而且?X1?X2,X1?X2??va?rX1??va?rX2??0,

X1?X2?服从二元正态分布,所以X1?X2与X1?X2相互独立.

第 4 页 共 9 页